WORKING DRAFT X3T9.2/92-199r9

Revision 9
March 14, 1993

Information Technology
SCSI-3 Serial Bus Protocol

This is an internal working document of X3T9.2, a Task Group of Accredited Standards
Committee X3. As such, this is not a completed standard and has not been approved by Task
Group X3T9.2. The contents are being actively modified by the X3T9.2 Task Group. This
document is made available for review and comment only.

COPYRIGHT NOTICE: In accordance with the usual ANSI policy on the revision of standards, this
draft standard may be reproduced, for purpose of review and comment only, without further
permission, provided this notice is included. All other rights are reserved.

ASC X3T9.2 Technical Editors:

Edward A. Gardner Gerald A. Marazas Scott Smyers
CXO 1-2/ N26 IBM Corporation MS 69G
Digital Equipment Corp. P.O. Box 1328 Apple Computer
301 Rockrimmon Blvd. Boca Raton, FL 33429 3535 Monroe Street
Colorado Springs, CO 80919 Mail Stop 5432 Santa Clara, CA 95051
Voice:
(719) 548-2247 (407) 982-4423 (408) 974-7057
Fax:
(719) 548-3364 (408) 974-2898
Email:

gardner@ssag.enet.dec.com marazas@bcrvmpc2.ibm.com smyers.s@applelink.apple.com

Reference number
ISO/IEC ***** : 199x
ANS] ***** - 199x
Printed August 11, 2000

Other Points of Contact:

X3T9.2 Chair X3T9.2 Vice-Chair

John B. Lohmeyer I. Dal Allan

NCR Corporation ENDL

1635 Aeroplaza Drive 14426 Black Walnut Court

Colorado Springs, CO 80916 Saratoga, CA 95070
Voice:

(719) 596-5795 x362 (408) 867-6630
Fax:

(719) 574-0424 (408) 867-2115
Email:

john.lohmeyer@ftcollinsco.ncr. 2501752@mcimail.com
com

Revision History

Changes from X3T9.2/92-199r8 to X3T9.2/92-199r8

e More editting towards ISO style compliance.

Changes from X3T9.2/92-199r7 to X3T9.2/92-199r8

» Editting towards compliance with 1SO style guidelines.
* Revised definitions.

Changes at Revision 7 from the base of Revision 6:

X3T9.2/92-199r9

e Made Changes in the Command block so as to gain better commonality with the Fibre Channel

command block supporting SCSI.

Working Draft SCSI-3 Serial Bus Protocol

X3T9.2/92-199r9

Contents
REVISION HISTOMY ...ttt ettt bttt b et b e b bt s b e bt e bt et e b see e b e st e ebe et e e ne e i
FOTBWWAITttt bbbt b R e bRt b e bt b e e bt e bt e bt e bt bttt n bt b n e Vi
INEFOTUCTION ...ttt bbbt b bbb bbbt bbb et b bt vii
Tl oL OO TP UP PP U UPR PPN 1
2. NOIMALIVE RETEIEINCES ...ttt b e bt r et b e b e bt ab e et enenr e anennereas 1
3. Definitions and CONVENTIONS.ciirieiiriieiiteie ettt ettt b e bbb nr e enesn s snennereas 1
3.1 DFINITIONS ...ttt bbb bbbt 1
4. OVEIVIBW.e ettt et h et b e b e bbb 8 b8 A b E s bbb R bRt b bbbt n s 3
5. Model of Serial BUS PrOtOCOIc..ciiiiiiiiiecic et 5
5.1. Model of Serial SCSI INITIALOTcoveiiiieiieie s 5
5.1.1. Shouldler Tap Protocol for Command DeliVEIYcccccviiiiiiiniiiieie e 6
5.1.1.1. Tap Slots Dedicated t0 an INItIALOrcoceririiieiccie e 7
5.1.1.2. Grant of an Initiator 1D at Log-1Nn TimMe.......ccccooiiiiiiiiiiieee e 7
5.1.1.3. Request for Grant of Dedicated Tap SIOtS........ccccuviriiiriinieie e 7
5.1.1.4. Grant of a Tap Slot From a General Pool of Tap SIOtScccccviiiiiniciiicc 8
5.1.2. Setting Of the M_FIagcoi it e 8
5.1.3. Setting Of the ESC_FIagccveiiiiie ittt 8
5.1.4. Setting Of the L_FIAgcceieiiiieee e e 9
5.1.5. Focus of @ Command CRaiN..........ccoiiiiriiiiinieisee e 9
5.1.6. Composition of @ CommMand ChaiN............coceiiiiiiiiiee e 9
5.1.6.1. Recommendations for Ordered COMMANGS...........ccoereirereineneiese e 10
5.1.6.2. Recommendations for Head of Queue Commands..........c.ccccevvveveeieeviesiieseeseenieens 11
5.1.6.3. Requirements for Processing Linked Commands............cccccoverereniennenenenesieseeenns 11
5.1.7. Retention of a Command Block by the INItiator ... 12
5.2. Model Of Serial SCSI TAIQELoceiieiieiiie ettt bbbt see 12
5.2.1. Usage 0f the Status FIFO.........oiiiiiiiii it 13
5.2.2.USa08 OF the L_FIaQ ..cvoiiieiiiie ettt e 13
5.2.3.USage OF the IM_FIAQ ...eoiiie it 14
5.2.4.Usage OF the ESC_FIaQ......ciuiieitiiieieiiee ettt e 14
5.2.5. Management Of Target RESOUICESccueueiiriirieiieieeieie et sae 14
5.2.5.1. Management of the Tap SI0t RESOUICE........ccccoiiiiiiiiiice e 15
5.2.5.2. Management of the Command Block Storage RESOUICEccooeverereeiiciirsiennenn 17
5.2.5.3. Schedule Policy for Fetching Among Multiple Command Chains.............c.ccce..... 17
5.2.5.4. Fetch of Command Blocks From a Chain Referenced to the Urgent FIFO 19
5.2.5.5. Repeated Access to Same Command BIOCKccoceiiiiiiiiiiiniieiieee e 19
5.2.5.6. SUPPOIT OF AULOSENSEcuviviiieiiieiieie ettt ettt bbb e 19
6. Command TransTer PrOtOCOL..........covciiiiiiieiei e e 21
6.1. Conceptual Initiator - Target CONNECTIONc.eiiiiiiiiirie et 21
6.2. Multiple INItiator ENVIFONMENT..........oiiiiiie ittt bbb e 23
A 160 A Y LT OSSOSO URRPRN 25
Working Draft SCSI-3 Serial Bus Protocol

X3T9.2/92-199r9

8. SCSI-3 Serial Bus Protocol SUPPOIt EIBMENLS.........c.oiiiiiiiieiie st 27
8.1. Target "Register” DefiNitiONS.........coco ittt 27
8.1.1. COMMANG FIFOS......ciiiitiiiiieiirieee et 28

8.1.1.1. NOIMAI FIFO ..ot 28

8.1.1.2. UGNt FIFO ..ot 29

B.L.1.3. ACA FIFO .. 30

8.1.2. First Failure "Register" (OPLioNal)ccoiieiiiiiieie et 30

8.1.3. First Failure Control "Register"” (Optional)ccooeieiiiiiiniiieieiee s 31

8.2. Initiator "Register” DefiNitioNScocoiiiiiiiieee e 31
8.2.1. SEALUS FIFO ...ttt bbb 31

8.2.2. Asynchronous EVENt REPOIINGcceiiiiiiiieieie et s 31

9. Command and Status INFOMMALIONcuiiriiiiee et 33
9.1, COMMANG BIOCKScveiiiiiiteietiitet ettt r e bt b e nn e ebenn e erenn e 33

9.2, SEALUS BIOCK ...ttt b 38

9.3. Initiator SCALEr/GANEr LESTcoveiiiiieiiteieeie e 39

10. Payload Specification For Command Transfer PACKELScccviiiiiiieieiene e 41
10.1. Payload of SCSI Command Initiation Packet - "Tap Packet"...........cccoveiiniiiiiiiiiii e 41
10.1.1. Response Reactions t0 Tap PACKELccooiiiiiiiiiiie e 41
10.1.1.1. Response Reactions When Tap Packet is AcCeptedccocevvririeeieienenencniene 42

10.1.1.2. Response Reactions When Tap Packet is Not Acceptedocovvvviiniiicncnenn. 42

10.2. ComMMANG REAA REGUESTccuiiiiiiiierieite ettt ettt st bbbt e e e 43
10.2.1. REQUESE PAYIOAM.ciieiiiiiieiete ettt n s 43

10.2.2. RESPONSE PAYIOAAc.veiiiiieieiiie ittt bbb bbb see s 43

11. Data TranSfer PrOTOCOL........cc.ciiiiiiriiici ittt 45
11.1. ASYNCIIONOUS TIANSTEE ..ot b bbb e 45
11.1.1. Data Read From Device MedilUmccoeiiiiiiiineiciieee e 45

11.1.2. Data Written To Device MEdiUMmcccooiieiiiiieiiieiciie e 45

12. Status TranSfer PrOOCOL.........cuiiiiiiiiiciit bbbt et 47
12.1. Target Reaction to Initiator Failure to Accept a Status BIOCK...........cccooeiiiiiiiiiiiiiic e 47
12.2. Target Reaction to Abort Tag Request From an INitiator...........cccoveeiieieneneiiecee e 48
12.3. Target Reaction When a Cmmand Block Cannot Be Fetchedcccccooiiieiiiinicic e 48
12.4. Target Reaction to a Unit Attention Condition ..o 49

13. SBP CONIOl PrOTOCOISc.ecuiitiiciiitiieist bbbt 51
13,1, OGN PrOtOCO ...t bbb bbbt e e b e 51
13.2. Request/Release 0f @ TaP SIOt ..ot e 52
13.3. Request/Release of Notification for ASynchronous EVENtS............coeveiiiiniieiininceieecee 55

I 101 o] [OSSPSR 57
14.1. Target Read COMIMANGciiiiiiiiiiitieeeiee ettt sb bbbt se et b e b e 57
14.2. Target Multiple Read COMMENScceiiiiiiiiieie e 58

T Y (TS F: o T T TP PP URTURTURPPRO 61
15.1. ADOIt TAQ PaAYIOA ... bbbt e 62
15.2. Target RESEt PAYIOAcouiiiiiiiie ittt et e 62
15.3. Payload of Clear QUEUE PACKEL...........ccoi i e 62
15.4. Priority Tap Message PaYIOadcccooiiiiiiiiie it e 63

Working Draft SCSI-3 Serial Bus Protocol iv

X3T9.2/92-199r9

15.5. Log-In_Request Message PaylOad......... ..ot 63
15.6. FF_Control_Request Message Payloadc.coiiiiiiii i 63
15.7. Request/Release of Tap Slots Message Payload............ccccoeiiiiiiieienc e 63
15.8. Request/Release of Asynchronous Notification Message Payloadcccccoceveiiniiiiencncnene 64
16. Compatibility t0 Parallel SCSI..........oiiiiiiiii et s 65
16.1. Relation of a Target to Multiple INItIALOrSccooiiiiiiic e 65
APPENIX A. PACKEE FOIMALSeouiieiitiieie ettt e bbbttt nn e e 67
16.2. WIHEE PACKELS ... ettt b et b e r et nenn e enenr e 67

Working Draft SCSI-3 Serial Bus Protocol Y

X3T9.2/92-199r9

Foreward
ths

Working Draft SCSI-3 Serial Bus Protocol vi

X3T9.2/92-199r9

Introduction
ths

Working Draft SCSI-3 Serial Bus Protocol vii

10

15

20

25

30

X3T9.2/92-199r9

Information Technology
SCSI-3 Serial Bus Protocol

1. Scope
tbs

2. Normative References
ths

3. Definitions and Conventions

3.1. Definitions

3.1.1. Auto-Contingent Allegiance FIFO: This is a data structure within a target which is intended to hold
the contents of a Tap packet associated with a command block chain intended by the initiator to respond to
an Autocontingent Allegiance Condition (ACA) existing at the target.

3.1.2. Command Block Chain: A sequence of command blocks created by an initiator and stored within
the address space of that initiator.

3.1.3. Command Block: A data structure that an initiator creates to describe a command to be performed
by a target.

3.1.4. Fetch: The action of a target obtaining a copy of a command block and entering the command into a
task set.

3.1.5. Initiator Identifier: An 8-bit identifier assigned uniquely to a given initiator by a target as a result of
completion of a log-in procedure by the initiator at the given target.

3.1.6. Log-in: This is a procedure by which an initiator sends a Log-In Request message to a target for the
purpose of obtaining a short form (8-bit) identifier to be used in all subsequent interactions with that target.

3.1.7. Normal FIFO: A data structure within a target which holds the contents of a Tap packet.

3.1.8. Sign-in: This is a procedure by which an initiator requests that a target provide to the initiator
notification of asynchronous events which may occur at that target.

3.1.9. Status Block: A data structure sent by the target to convey completion status.

3.1.10. Status FIFO: A data structure within an initiator which holds the contents of a Status Block sent by
a target to the initiator.

3.1.11. Tap Packet: This packet conveys a payload sent by an initiator to inform a target of a chain of
command blocks in the initiator memory space. The target is requested to begin fetching these command
blocks (one at a time) starting with the address of the first command block as conveyed by the Tap packet.

3.1.12. Tap Slot: A resource within a target used to hold a tap packet.
3.1.13. Urgent FIFO: A data structure within a target which holds the contents of a Tap packet.

Working Draft SCSI-3 Serial Bus Protocol 1

10

15

20

25

X3T9.2/92-199r9

4. Overview

The SCSI 3 Serial Bus Protocol has the following features:

Fixed length command blocks (See note below)

Fixed length status blocks

Fair support for multiple initiators

Separate command queues for each initiator/target pair
Ability to support multiple command queues per initiator
Command queue depth determined by initiator

Number of overlapped commands in progress limited by target
Supports Parallel SCSI error recovery procedures

Supports Isochronous operation

Supports a protocol for requesting and dedicating critical target resource associated with reception of
notification from an initiator that commands are waiting for the target to work upon.

Supports a protocol for dynamic allocation of the critical target resource associated with reception of
notification of commands waiting in the initiator.

Supports a protocol whereby initiators signify to a target that they request notification of asynchronous
events occurring at that target.

Implementation Note:

target vendors (particularly at the low end) have expressed strong preference for a solution in which
every effort is made to reduce the size of the command block. Opportunities should be sought to obtain
a smaller command block if this can be done without making unacceptable compromises in functional
capability.

The organization of the command block is intended to facilitate the situation in which a target can fetch
portions of it in order to determine important aspects of the command which is carried and thereby to
decided whether optimization opportunities exist. One instance of an optimization opportunity is
selection of the sequence of command execution so as to minimize seek time.

Working Draft SCSI-3 Serial Bus Protocol 3

10

15

20

25

30

35

40

45

X3T9.2/92-199r9

5. Model of Serial Bus Protocol

This section describes the architectural model for the SCSI initiator and for the SCSI target as they interact
within the SCSI 3 Serial Bus Protocol.

5.1. Model of Serial SCSI Initiator

The initiator is responsible for building the command blocks, queueing multiple command blocks,
allocating status block buffers, and handling the correlation between command blocks and status blocks. It
is anticipated that the initiator may find it beneficial to associate command blocks together into a structure
commonly called a command block chain, or more simply a chain. A major reason for forming commands
into a chain is that processing efficiency is enhanced within the initiator. Individual commands within the
chain do not need to have any particular connection to one another. However, in many instances there is
some relation among the commands as viewed by the initiator. In certain applications, a high level logical
work item results in many physical level 1/O commands which originate over such a small interval of time
that the multiple commands constitute a block of work to be done by the target device. It becomes a natural
as well as efficient solution to process these commands by forming them into a command block chain.

EDITORIAL NOTE: Care should be taken to distinguish between the new facility of commands formed
into a chain and the existing facility in SCSI known as the Linked command. With regard to the SCSI 3
Queueing Model, an entire collection of Linked commands are considered as a single 1/0 Process.
Once work by the target has been started on the first element within the set of of Linked commands, the
target must fetch and complete each of the remaining elements within the Linked I/O process before
any work may de done on behalf of any other 1/0 process. In important contrast to this situation for
elements of a Linked 1/O process, within the Serial SCSI command chain, each command is considered
a separate and distinct 1/0 Process. If there are multiple chains, then the target may interleave its work
activity among the chains. Linked commands may be used in a chain subject to the restriction that the
collection of Linked commands must only be placed as the last element of a given chain.

In the SCSI 3 Serial Bus Protocol, command blocks are queued by an initiator within its memory space. An
initiator must be capable of providing a given, queued command block at any time upon request from the
target. This mechanism for command delivery is paced by the target. Such a mechanism controlled by the
target helps to avoid busy conditions where the target cannot accept any further command blocks. As a
supported and encouraged option within the Serial Bus Protocol, target devices may fetch multiple
commands (one at a time) from any initiator. In this manner (via pre-fetch), the target has the optimization
option of overlapping certain process steps for a later command while the current command is in execution.

Provision is made for the initiator to specify the manner in which the target is to fetch commands blocks
when multiple chains are present. This control is exercised through use of the concept of sub-chains within
a chain. The notion is that once a target has begun fetching command blocks from some subchain, the target
is required to fetch command blocks, in sequential order, from start to finish of that sub-chain. Such a fetch
policy is also known as "fetch until the queue is empty", or more briefly as a "QE" fetch policy. In contrast
to the QE fetch policy, fetching between sub-chains is done on a Round Robin (RR) basis. A flag called the
End Sub-Chain, or ESC_Flag, may be used to mark the end of a given sub-chain. Any command blocks
following in the chain would thus be considered as being within a new sub-chain.

At one extreme, the ESC_Flag might never be used within any command block in a given collection of
command block chains. In this circumstance the QE fetch policy is used among the chains so that every
command within one chain is fetched before any command is fetched from some other chain. At the other
end of the spectrum, the ESC_Flag is set to value one in each and every command block within every chain.
In this circumstance a Round Robin fetch policy is used among all command blocks such that commands
are fetched, one command from one chain, and then another command from some other chain. Should a

Working Draft SCSI-3 Serial Bus Protocol 5

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Initiator

Linked command be encountered, then all commands from the Linked set must be fetched and completed
before the target is allowed to process non-Linked commands from any chain.

5.1.1. Shouldler Tap Protocol for Command Delivery

As there are potentially multiple initiators in a system, there has to be a method for an initiator to indicate to
a target that it has some work for that target. A conceptual "tap on the shoulder” is performed via a SCSI
Command Initiation Packet sent to a set of Command FIFOs maintained by the target. Three members are
defined for this set of Command FIFOs. The first member is the Normal FIFO and this is intended for use
by command chains for which it is not necessary to fetch the associated command blocks on a special or a
priority basis. The second member is the Urgent FIFO and this is intended for use by SCSI messages sent
to the target by the initiator for various control purposes. One instance of use of the Urgent FIFO is for an
initiator to call attention to a specific command (such as a Head of Queue command) which is to receive
special or expedited processing by the target. The third member of of the Command FIFO set is the ACA
FIFO and this is intended for use in support of sending ACA commands to a target for which an ACA
condition is in effect.

IMPLEMENTOR NOTE: It is highly important that proper and appropriate use be made of Tap packets
sent to the Urgent FIFO versus Tap packets sent to the Normal FIFO. The Urgent FIFO should be used
to reference command blocks which are to receive priority fetching, which is to say, fetching in front of
fetching of command blocks referenced to the Normal FIFO. Expected and appropriate allocation of
target resource is such that many more Tap slots are to be provided for use with the Normal FIFO than
are provided for use with the Urgent FIFO. This allocation of Tap Slots between the Normal and the
Urgent FIFO is in expectation that the largest number of command chains and the largest number of
command blocks are to be referenced to the Normal FIFO. Performance problems may be encountered
if Tap packets which should have been sent to the Normal FIFO are instead sent to the Urgent FIFO.

One set of these three FIFOs shall be provided per target. This single set is to be shared by all Logical Units
connected to the given target. In particular, the single Normal FIFO represents a conceptual common entry
point for all SCSI Command Initiation packets (Tap packets) being sent to the given target. The functional
use of this single common entry point is to ensure that relative order of arrival is correctly maintained
among all Tap packets. This relative order of arrival defines an implied time stamp which is to be used for
the command block chain associated with the tap packet. All of the allowed policies for fetching command
blocks from a chain are based on this implied time stamp.

Many implementation choices are available as to hardware and/or software means to support the Normal
FIFO and the Urgent FIFO data structures. A comparable structure, the Status FIFO, is defined for use
within the initiator in order to receive status information from the target regarding command completion.
Observe, at the conceptual level, the Status FIFO and the Normal FIFO and the Urgent FIFO have many
notions in common. A key element common to both the Status FIFO in the initiator and the set of two
FIFOs in the target is that the same size packet (12 Bytes of payload) is sent to all of them. This is not to say
that any requirement exists to provide the same hardware implementation for the Normal FIFO, the Urgent
FIFO, and the Status FIFO.

There are always limits as to the number of "Shoulder Taps" which can be accommodated at any one time
by a target. The initiator must be prepared to accept a response from a target which states the present Tap
cannot be accepted. Various software means may be employed by the initiator to deal with this situation that
a target is temporarily not able to accept a Tap. Various elements of the Command Delivery architecture of
the Serial Bus Protocol operate so as to make it an unusual and infrequent circumstance that a given Tap
cannot be accepted. Some of these features are described in the following sections.

After the target has received a "Tap", it will read command blocks, one at a time, using a Read Transaction
as defined by the Transaction Layer architecture of the IEEE 1394 standard. The Request portion of the
Read Transaction makes use of IEEE 1394 style address of the command block. For the first command, the
needed command block address is supplied via the SCSI Command Initiation Packet. For second and

Working Draft SCSI-3 Serial Bus Protocol 6

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Initiator

following commands within a chain, if present, the address for the next command is contained as a field
within the present command block.

5.1.1.1. Tap Slots Dedicated to an Initiator

As a key element of the way in which it can become a rare event for a Tap packet to be rejected by a target,
there is the facility provided at the target that the target reserve a given number of slots (Tap Slots) for
acceptance of a Tap packet from a given initiator. For its part, each initiator knows the minimum number of
Tap slots at each target which are exclusively available to it. The initiator can then choose to assume the
responsibility to manage its transmission of Tap packets so that the number of Tap Slots which it has in use
at any point in time are less than or equal to its allocated number of Tap Slots.

So as to make efficient usage of the Tap Slot resource at the target, the initiator is allowed to attempt to
secure usage of a larger number of Tap Slots than the number dedicated to that initiator by the given target.
The key point is that the target is "allowed" to reject a Tap packet from an initiator if that Tap packet would
consume a Tap Slot above and beyond the number of Tap Slots dedicated at the target for use by the given
initiator. The initiator would need to provide software to manage its reaction to the rejection of a Tap
packet when such rejection is "allowed". In the alternative, the initiator could choose to provide software
which manages the number of Tap packets consistent with the number of Tap Slots dedicated for its use.

There is the related notion that a target is "not allowed" to reject a Tap packet from an initiator if the current
number of "in-use" Tap Slots is less than the number of Tap Slots declared as dedicated to the given
initiator. In this context, the term "not allowed" means that any rejection by the target of a Tap packet is a
failure by the target to administer correctly the Shoulder Tap protocol. Such failure by the target, if
occurring, shall cause appropriate error recovery procedures by the target. The intent, is to minimize, and
hopefully reduce to zero, the impact on the initiator when a rejection of a Tap packet occurs under the
"allowed" circumstance. To contrast for emphasis, it is the responsibility of the initiator to invoke initiator-
side recovery/reaction procedures when rejection of a Tap packet occurs in the "allowed" situation. It is the
responsibility of the target to invoke target-side recovery/reaction procedures when rejection of a Tap
packet occurs in the "not allowed" situation.

5.1.1.2. Grant of an Initiator ID at Log-In Time

An initiator Identifier is used to provide convenient means for the target to monitor Tap packets received
from each initiator so as to determine if the Tap packet would require use of a Tap Slot beyond the humber
of Tap Slots dedicated to that initiator. The grant of an initiator Identifier occurs as a result of successful
completion of a log-in procedure by the initiator at the given target. Refer to the section entitled, "Log-In
Protocol™ for details.

5.1.1.3. Request for Grant of Dedicated Tap Slots

In order to receive an allocation of Tap Slots granted for its exclusive use, the initiator is required to make
use of its initiator Identifier. Refer to the section entitled, "Request/Release of a Tap Slot" for details. As a
result of the successful completion of this protocol the initiator is provided a statement from the target of the
number of Tap Slots reserved at that target for exclusive use by the initiator. Once a grant of exclusive use
Tap Slot is made by the target, the given Tap Slot or set of Tap Slots remains dedicated to the initiator until
explicit release of some or all of these Tap Slots is made by the initiator.

Thus, the normal situation is that a dedicated Tap Slot will be reused, possibly indefinitely, by multiple Tap
packets coming from the given initiator. Making the same statement in different words, a dedicated Tap
Slot, in the normal situation, will be reused by multiple command block chains originating from the same
initiator.

5.1.1.4. Grant of a Tap Slot From a General Pool of Tap Slots

In order to make efficient use of target resources, the target shall maintain a general pool of all its Tap Slots
which have not been allocated and therefore dedicated to a specific initiator. Each initiator is permitted to

Working Draft SCSI-3 Serial Bus Protocol 7

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Initiator

obtain the temporary use of a Tap Slot from this general pool. The meaning of temporary in this context is
that the grant of the Tap Slot is limited for the duration of a single command block chain. Once, all
command blocks within the chain have been completed by the target (and completion status returned for
each of these command blocks), then the target shall return that Tap Slot to the general pool.

An initiator gains temporary use of a Tap Slot when it gains acceptance by the target of a Tap packet in the
situation that all of the Tap Slots reserved for that initiator are presently in use. As a special emphasis
point, since all of the Tap Slots dedicated to this initiator are in use, the target is "allowed" to reject the new
Tap packet.

5.1.2. Setting of the M_Flag

The mechanism for forming commands into a chain makes use of the field in the command block which is
the address of the next command. Thus, a chain consists of those commands connected to one another by
an initiator (or collection of initiators) through the use of a forward pointer consisting of the next command
address field found in each command block. Each command block also contains a flag, called the
More_Flag, or more briefly the M_FLAG. When the M_FLAG has value equal to one, it means there is at
least one command block in the chain occurring after this present command block. The very last command
block in the chain is indicated by having value equal to zero for the M_FLAG. The initiator preserves for
later use the address of the next command block which is to be fetched from the given chain.

When a chain has been made known to the target, and before the first command block has been fetched
from the chain, the address stored by the target is address of the head of the command block chain in
initiator memory space. It is convenient to refer to the starting address of a command block chain as being
the address of the first command block in that chain.

5.1.3. Setting of the ESC_Flag

The mechanism for control by the initiator of the command block fetch policy used by the target is by
means of the ESC_Flag. Once a target fetches a command block from a given chain, the default fetch
policy is for the target to continue fetching additional command blocks from the same chain until: (a) the
end of the given chain has been reached, or (b) the target encounters a command block in which the
ESC_Flag has been set to value one. When the ESC_Flag has value equal one, the initiator is providing
explicit statement that the target is to fetch the next command block from some other chain if there are other
chains presently identified to that target. If there are no other chains known to the target, then the next
command block would be fetched from the present chain if there are still unfetched command blocks within
the subject command block chain.

It is useful to consider an alternate explanation and interpretation for the significance of setting the
ESC_Flag to value one within a given command block. The implications on fetch policy employed by the
target are the same. The alternative explanation provides useful perspective on the nature of the implied
time stamp associated with each command block chain.

Each command block chain has an implied time stamp based on the relative order of arrival of Tap packets
at the target. Unless use is made of the ESC_Flag, each and every command block within a given chain has
the same time stamp value; namely, the implied time stamp given to the chain via the arrival time of the Tap
packet. Additionally, chains are to have command blocks fetched from them in the order specified by the
implied stamp. Thus, the chain with lowest implied time stamp has command blocks fetched from it and
before command blocks are fetched from chains with higher value of implied time stamp.

As a consequence of setting the ESC_Flag to value one within a command block, the implied time stamp is
advanced to the present time for any and all command blocks remaining within the given chain. Thus, the
command blocks are to be viewed as existing within a new chain, a sub-chain, and this sub-chain now has
an implied time stamp later than the implied time stamp of all other chains known to the target. These
remaining command blocks each have the same time stamp just assigned to the sub-chain. Since this time
stamp is the latest value of all time stamps, then the new sub-chain will have its command blocks fetched

Working Draft SCSI-3 Serial Bus Protocol 8

10

15

20

25

30

35

40

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Initiator

after the command blocks from every other chain known to the target. It should be observed, there is no
restriction on the number of command blocks which may have their ESC_Flag set to one. Should other
command blocks have their ESC_Flag set to value one, then remaining command blocks from those chains
would have implied time stamp advanced to a value later than the subject sub-chain.

5.1.4. Setting of the L_Flag

A redundant indication for a Linked command is given within the command block by means of the
Link_Flag, or more briefly the L_Flag. In compatibility with SCSI 2, the presence of a Linked command
must be indicated by appropriate setting of the Linked bit within the SCSI 2 Command Descriptor Block
(CDB). However, if the CDB were providing the only means to identify the presence of a Linked command,
then every CDB would have to be interpreted in sufficient detail to determine if a Linked command were
present before the target could decide upon the required course of action relative to order of completion
among the possibly multiple commands which may have been fetched by the target. Thus, as a matter of
convenience, the target has means to identify a Linked command based on examination of the L_Flag within
the Serial Bus Protocol command block.

5.1.5. Focus of a Command Chain

Per the Serial Bus Protocol, a wide range of choices is given to initiator as to the relationship between
commands in a chain, and the various Logical Units (LUNS) supported by a given target. In one permitted
alternative, the same chain may contain command blocks intended for different LUNs supported by the
same target. In another permitted alternative, the initiator may organize a chain so that it contains
commands intended for only one LUN. As a still additional permitted alternative, the initiator may direct
multiple different chains to the same LUN. In all alternatives, every command within the same chain must
be directed to the same target.

A target may choose to implement the facility in which multiple command blocks have been fetched, and
these command blocks may have come from different chains and even from different initiators. In
conformity to the notion of Task Set within the SCSI 3 Queueing Model, the target which has fetched
multiple command blocks must be able to develop different lists drawn from the present population of
commands presently maintained in target working storage. It is necessary for the target to identify all
fetched commands associated with a given LUN. It is also necessary for the target to identify all fetched
commands associated with a given initiator. The most simple case from the perspective of the target is that
it fetches and maintains in working storage one and only one command block at any point in time.

5.1.6. Composition of a Command Chain

The following four types of 1/0 process are defined in the SCSI 3 queueing model:
1. Simple

2. Ordered

3. Head of Queue

4. Autocontingent Allegiance (ACA)

Additionally, subject to the restriction described below, a collection of SCSI Linked commands may be
included within a command block chain. Per the SCSI 3 queueing model, a given collection of linked
commands is considered as a single 1/O process such that each of the linked elements must be completed by
the target in the order specified by the initiator, from start to finish and without interruption by other 1/0
processes.

With the obvious exception of the ACA 1/0 process, any of the above types of 1/0 process drawn from the
list above may be included within the same command block chain. In the following three subsections:

() Recommendations for Ordered commands,

Working Draft SCSI-3 Serial Bus Protocol 9

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Initiator

(b) Recommendations for Head of Queue commands, and

(c) Requirements for Processing Linked commands, alternatives and implications are considered regarding
processing of these types of commands.

The Urgent FIFO is a supported alternative to send a message to the target in order to provide the initiator
with a processing alternative for command blocks which need to be fetched in a special or in a priority
manner relative to the fetching of command blocks associated with a chain referenced to the Normal FIFO.

If the initiator can accept a modest level of loss of control over the time sequence of processing for Ordered
commands and for Head of Queue type commands, these two types of commands may be placed by the
initiator at any location within one of its command block chains referenced to a Tap packet sent to the
Normal FIFO. Linked type commands be must placed only as the last element of a command block chain.
A significant reason for this restriction on placement of Linked commands in a command block chain
follows from the difficulty faced by the target in making acceptable recovery from execution time failure of
a Linked command in a sequence of Linked commands.

5.1.6.1. Recommendations for Ordered Commands

If there exists a sequence of Simple I/O commands which are to be completed before a sequence of one or
more Ordered commands,then at least two alternatives are available to the initiator or initiators interested in
the situation. In the discussion of these two alternatives, it is assumed that no initiator issues a Head of
Queue command. It is further assumed that no check condition occurs so that no Contingent Allegiance
Condition is declared.

The first alternative is probably best suited to the case in which only one initiator is relevant to the situation.
The initiator creates a chain in which the given Ordered command is placed in the correct position within
the chain relative to Simple commands which are to be completed prior to the Ordered command. Once the
chain has been entered via a fetch of the first command block, all subsequent fetches by the target are
required to be from the same chain as long as each of the fetched command blocks has value zero for the
ESC_Flag. This is to say, the initiator constructing the given chain has it within its own ability to control
fetch policy by the target so that the given chain is processed in the manner considered appropriate by that
initiator.

Alternative two is applicable to the case in which multiple command block chains are present and the
completion of the given Ordered command has significance relative to commands blocks from two or more
of these chains. In alternative two the interested initiator or initiators construct multiple chains such that
Simple commands are exclusively placed in one set of chains and the given Ordered command is placed in a
chain of its own. Tap packets for these several chains are sent in an appropriate time sequence such that the
desired relative order of arrival (and therefore implied stamps in the desired order) is achieved at the given
target.

5.1.6.2. Recommendations for Head of Queue Commands

In concept, the same two alternatives for dealing with Ordered commands also exist for dealing with Head
of Queue commands. However, the notion of time stamp does not really have application to processing by
the target of the Head of Queue command. The obligation of the target is to place the subject command at
the head of the queue maintained by the target for those commands which have been fetched but not yet
completed. There is the additional complexity that: (a) targets may differ with regard to how many
command blocks are prefetched beyond the command block presently in execution, and (b) the number of
command blocks within the prefetch set which are decoded with regard to queue type. Thus, when a Head
of Queue command is placed in a general command chain along with other command blocks, there are
many aspects of uncertainty as to when the Head of Queue command is actually advanced to the head of the
queue. These uncertainties include the point in time when the command is fetched and the point in time
when the command is decoded and thereby recognized.

Working Draft SCSI-3 Serial Bus Protocol 10

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Initiator

Thus, from the perspective of the initiator, it is most important to have more control over the point in time
that the target makes the determination that a Head of Queue command has been sent by some initiator. This
objective of the initiator is best accomplished by an additional alternate, namely alternative 3. In alternative
3 a Tap packet message is sent to the target's Urgent FIFO. In principle, any type of 1/O process can be
included within the command block chain referenced by the Tap packet message sent to the target's Urgent
FIFO. It is strongly recommended that the facilities of a Tap packet sent to the Urgent FIFO are best used
when the referenced chain contains only a Head of Queue command. To a much lesser extent a case can be
made that it is acceptable to included Ordered commands within a chain referenced to the Urgent FIFO. In
selected instances it may also be appropriate to include certain Isochronous commands in the command
block chain referenced to the Urgent FIFO. Inclusion of all other types of command in the chain referenced
to the Urgent FIFO should be considered inappropriate and an abuse of this facility.

The alternative in which a Tap packet message is sent to the Urgent FIFO informs the target of a priority
matter needing immediate treatment relative to the procedure for fetching commands blocks. As a special
emphasis point, the priority processing associated with the Urgent FIFO is focused on fetching command
blocks and not upon executing them. The same order of execution rules apply to command blocks whether
these commands are referenced to the Urgent FIFO or to the Normal FIFO. When a target receives the Tap
packet in the Urgent FIFO, the target has the obligation to begin fetching commands from the referenced
command block chain as soon as possible. The target must fetch command blocks from this chain before it
fetches any command from any chain referenced to he Normal FIFO. Once command blocks are fetched
from the chain referenced to the Urgent FIFO, normal processing rules apply as determined by the queue
type associated to each of the fetched commands. In the case of the Head of Queue command, the target is
required to place this command at the head of its queue. The target is allowed to apply its own optimization
rules as to when it should complete execution of a command with queue type equal to Simple independent
of whether that command was fetched from a command chain referenced to the Urgent FIFO. Implied time
stamp dictates the order of execution for a command with queue type equal to Ordered even though that
command is referenced to the Urgent FIFO.

The facilities of the Urgent FIFO are well adapted for fetching and then completing execution of a
command block carrying a Head of Queue type command. The Tap packet message sent to the Urgent FIFO
reveals to the target the existence of a Head of Queue command in a direct fashion compared to the
alternative in which a command block is fetched and no knowledge of the type command is gained until that
command block is decoded.

5.1.6.3. Requirements for Processing Linked Commands

A collection of Linked commands may be included within a command block chain if the subject Linked 1/0
process is the very last 1/0 process within the chain. Additionally, the L_Flag must be set to value one for
every Linked command except the final Linked command in the collection. For this final Linked command,
the appropriate bit in the CDB must indicate this to be the ending command in the Linked set. Additionally,
both the L_Flag and the M_Flag in the command block must be set each to value zero.

5.1.7. Retention of a Command Block by the Initiator

The initiator must be aware that the target may have legitimate need to refetch the same command block at
any arbitrary time after the time of original fetch up to the time of return of completion status and/or sense
data. One reason for a refetch is that a target may elect to take advantage of the option in which ending
portions of the command block are read only when a check condition occurs. A second instance of
refetching a command is the optimization policy in which many command blocks are read and then
discarded in order to determine which command is best to execute next so as to achieve best performance.
Some target devices may even elect to read less than the full portion of a command block in order to
determine whether the given command is a suitable candidate for execution via this optimization scheme.
The command selected for execution is then refetched. At the time when a command is in fact to be put into
execution by the target/LUN, at a minimum, the contents of the baseline portion of the command block must
be fetched by the target/LUN.

Working Draft SCSI-3 Serial Bus Protocol 11

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Target

Thus, the initiator must maintain the command block in memory at the same location as originally stated to
the target. The initiator must assume full consequences for any change in contents of the command block
from the time of first fetch of that block until the time of any later fetch. Aborting a command is an example
of a situation in which the initiator may feel it has a proper and good reason for altering some part of a
command block after it has been fetched and before return of completion status information.

5.2. Model of Serial SCSI Target

The target is responsible for fetching command blocks, one at a time from the various initiators having
indicated to it there is work to be performed on their behalf. Upon completion of any given command, the
target returns completion status information back to the appropriate initiator. The addressing scheme of
IEEE 1394 is sufficiently flexible that specification can be made for the target to return Status information
to a different initiator than originated the command block.

The general notion for a target is that it follows orders as provided by the initiator. In this context, flags,
such as the L_FLag and the ESC_Flag, are provided to the initiator so that appropriate control may be
exercised over the fetch policy of command blocks by the target. Additionally, there is a log-in and a sign-in
process in which initiators identify themselves as well as their special needs which require service by the
target. Thus, initiators advise the target if notification is to be given them regarding unit attention conditions
arising at the target. As the key part of the log-in process there is assignment of a special identifier to
initiators by the target so that the target may conveniently make distinctions among the initiators.
Maintenance of a guaranteed minimum number of Tap slots for a given initiator is a very important case of
making distinctions among the various initiators.

Since a given initiator may have multiple commands fetched by a target and not yet completed, the target
must provide correlation information between command blocks and status blocks. The address of the
associated command block shall be placed in the status block in order to provide this needed correlation.

Conceptually, there is a one to one relation between Sense Data blocks and Command blocks. Also, there is
also a one to one conceptual relation between a Status block and its associated Command block. Sense Data
blocks are most often written by the target to general purpose memory within the initiator address space.
Status blocks may be written by the target to special purpose hardware provided in support of the Status
FIFO. While a Sense Data block is not always sent for each and every command completing with "good
status”, there is the notion of allocating a Sense Data block area for each and every command.

Editorial Note: Based upon discussion within the SCSI Committee, it was determined to be necessary to
maintain full generality in the specification of starting address for the Sense Data buffer within the
initiator. As a result, the Sense Data buffer start location is specified by means of a full 64-bit address.
The notion of a Sense Data Buffer Offset has been removed from this document.

5.2.1. Usage of the Status FIFO

For purposes of this Serial Bus Protocol, status information is sent by the target to a Status FIFO within
initiator address space. Many implementation choices are available as to hardware and/or software means
to support the Status FIFO data structure. Observe, at the conceptual level, the Status FIFO and the
Command FIFO set (Normal FIFO and Urgent FIFO) have many notions in common. A key element
common to both the Status FIFO in the initiator and the Command FIFO set in the target is that the same
size packet (12 Bytes of payload) is sent to both. This is not to say that any requirement exists to provide
the same hardware implementation for the Command FIFO set and the Status FIFO. However, if specialized
hardware support is provided for each FIFO it can involve the same hardware design. One useful result of
the same hardware treatment for each FIFO is that it becomes more convenient for an initiator with its
Status FIFO to use the same equipment as a Command FIFO set and thereby be able (at the hardware level)
to also function as a target.

Working Draft SCSI-3 Serial Bus Protocol 12

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Target

5.2.2. Usage of the L_Flag

As processing begins for a fetched command block, the target must examine the L_Flag to determine if the
present command is a SCSI Linked command. Should the L_Flag have value to one, then the given
command is a Linked command and there is no relevant meaning to either the M_Flag or to the ESC_Flag.
Special processing and fetch policy rules exclusively apply to the collection of Linked commands.

It is mandatory within the Serial bus Protocol for the L_Flag to be supported by the target device. As per
SCSI 2, it is optional for the target to support Linked commands. If Linked commands are not supported by
the target, then is returned to the initiator as described by SCSI-2.

If SCSI Linked commands are supported by the target, then processing per the Serial Bus Protocol should
not preclude emulation of the same functional capabilities for Linked commands as described within SCSI
2. Each SCSI command within the Linked set is represented by its own Serial Bus Protocol command
block. With the exception of the last command block in the Linked set, the Next Command Address field
within command block N points to the start address of command block (N+1). For the final command
block in the Linked set, the L_Flag has value zero.

As per the processing rules within SCSI 2 for Linked commands, no attempt at overlap processing is
permitted between command block (N+1) and command Block N given that each of these are Linked
commands. Before any attempt is made by the target to fetch command block (N+1), it is necessary for both
command block N to be completed as well as return made to the initiator of the Status block for command
block N. SCSI 2 permits the initiator to select dynamically the next Linked command for execution based
on the result of completion for Linked command N. Should the initiator choose to take advantage of the
dynamic capability, it would need to modify the contents of command block (N+1) prior to return of it in
reaction to a IEEE 1394 Request Request from the target.

Implementor Note: The initiator may choose to take advantage of the IEEE 1394 facility of the Split
Transaction as an aid to modifying contents of command block (N+1) based upon completion status for
command block N. With the Split Transaction, the initiator has up to 100 milliseconds before it must
make a Read Response containing the contents of command block (N+1) in reaction to the Read
Request from the target for this command block.

Upon successful completion of the last Linked command in a Linked set, the target is to consider the given
command block chain to be concluded. The Next Command Address field is not to be considered valid for
this final Linked command. Neither is it necessary for the target to check the value of the M_Flag or the
ESC_Flag for this final Linked command.

5.2.3. Usage of the M_Flag

When a target reads a command block and determines it does not contain a Linked command, then it must
examine the M_Flag. If the M_FLAG is set to value equal zero, then the initiator has no further commands
for the target. If the flag has value equal one, then further commands within the given chain are waiting for
the target. In this case the Next Command Address field will contain the address from which the target
should read the next command. Note that this quantity is a full 64-bit address per the format specified within
the IEEE 1394 standard. Consequently, the command could be physically located in any device attached to
the IEEE 1394 bus.

5.2.4.Usage of the ESC_Flag

The ESC_Flag has meaning only once it is determined that that the present command is not a Linked
command (L_Flag equals zero) and there are more commands still to be fetched from this chain (M_Flag
equals one). If per the above rules it is appropriate to check the ESC_Flag, then the following reactions are
required of the target. 1f the ESC_Flag has value zero, then the default fetch policy applies and the target is
to obtain the next command block from the same chain based on the value of the Next Command address
field.

Working Draft SCSI-3 Serial Bus Protocol 13

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Target

If the ESC_Flag has value one, then the present command block marks the end of one sub-chain and the
next command block (within this chain) marks the start of a new sub-chain. The target is to advance the
implied time stamp of the new sub-chain to be the present time. In consequence of this advance of implied
time stamp, the new sub-chain is to be placed at the end of the list maintained by the target to describe the
order in which command blocks are to be fetched from command block chains. This is to say, command
blocks are to be fetched (in time sequence order) from all other chains before any command block is to be
fetched from the new sub-chain.

5.2.5. Management of Target Resources

It is important to recognize there are two important and potentially very different resources for the target to
manage. One resource is associated with processing a "Shoulder Tap" sent by the initiator to the target's
Command FIFO. The Shoulder Tap may be sent at any arbitrary time with no prior warning given to the
target. Potentially, a sequence of Shoulder Taps may occur, one immediately after another, in a "rapid fire"
scenario. In such a rapid fire case, there may not be time for the target to do anything with the 12-Byte Tap
packets other than store them. It is crucial that whenever a Tap packet is acknowledged as having been
accepted by the target, the contents of that Tap packet are safely stored and available for later use by that
target. Hardware and software support must be provided as necessary to ensure that the target be able to
accept a stated minimum number of shoulder taps at any point during processing of some command or at
any point in any other activity undertaken by the target. It is convenient to use the term "Tap Slot" when
dealing with the obligations associated with accepting a Shoulder Tap. The requirement placed upon the
target is to support an architected minimum number of Shoulder Taps which must be supported by an target
compliant to the Serial Bus Protocol.

The second resource which must be managed by the target is the storage necessary to hold a command
block. In managing this second resource it is most significant that command blocks do not come at
unexpected points in time. Each command block is specifically requested by the target. Thus the target can
ensure that sufficient storage is available. The target can also make sure the request for a new command
block is only made at a favorable time in the processing activity currently underway.

Management of these two resources is likely to proceed by substantially different means as discussed below.
One technical issue with management of the Tap Slot resource is the minimum number of shoulder taps
which can be guaranteed to exist at any target. A key point regarding a Tap Slot is the time duration it is
kept in a committed state dedicated to one given chain. With regard to storage of command blocks, some
questions are: how many can be prefetched, how much of the command block must be fetched, and the
policy for fetching blocks from different chains.

5.2.5.1. Management of the Tap Slot Resource

The Command Delivery protocol does not require any notice to be given by the target to the initiator
concerning completion of processing for the chain. Nor does this protocol require the target to give any
notice when it can make free a Tap Slot. Should a Tap Slot be a resource limiting the capability of the target
and/or initiators using that target, then it can be argued that the target should make this item available for
reuse at the earliest possible time. On the other hand, if active Tap Slots become too numerous, it may mean
the target has to manage an excessive number of commands chains, thereby providing a severe challenge to
the management of the resource for storing command blocks fetched by that target.

The very earliest point in time that a Tap slot can be released for use by another chain is immediately after
the contents of the Tap Packet have been copied to the general storage pool available to the target.
Observe, this earliest time is prior to actual fetch of the first command block from the initiator to the target.
A somewhat later point in time to release the Tap Slot is immediately after the fetch of the very first
command block in the chain. At this point (first command block stored by the target), all necessary
information is available to the target in order to proceed down the chain. The very latest point in time for
the target to release a Tap Slot is when the last command block has been completed and all necessary status
information has been returned back to the initiator. While still later release times for a Tap Slot are possible,

Working Draft SCSI-3 Serial Bus Protocol 14

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Target

they would seem to add undue delay in making free a valuable resource. Clearly, the target can choose to
release a Tap Slot at any time between the above earliest time and the above latest time.

The advantage in making an early release of a Tap Slot is that it makes the hold time for the Tap Slot
resource less than the hold time for the command block storage resource. In effect, the early release policy
for Tap Slots serves to increase the effective number of Tap slots relative to the number of command chains
which can be serviced by the target.

Editorial Note: Consideration is being given to provision of an optional facility whereby a target does
advise the initiator as to the number of Tap Slots available to the initiator relative to the number of Tap
Slots dedicated to the given initiator at that target. The vehicle for advising the initiator is the Status
block sent upon completion of each command within a command block chain. The SBP Status Byte
within this block is to carry the Tap Slot information. As a special emphasis point, the target is
permitted to maintain a Tap Slot in the "in-use" state until there is both completion and return of
completion status for each and every command block within the chain. In a permitted alternative, the
target may utilize an implementation in which the Tap Slot associated with a command block chain is
put into the "available for use" state at some point in time earlier than completion and return of
completion status for all command blocks within the chain. As an additional emphasis point, there is no
requirement to that a target inform the initiator when a Tap Slot has become available should it become
available prior to completion of the command block chain.

The Serial Bus Protocol does not place any requirement upon the target to conform to any specific policy
for release time management of Tap Slots. Such release time policy is left to the target as an implementation
consideration. The default policy for release of a Tap Slot is that the Tap Slot does not enter the "available
for use" state until completion and return of completion status of each and every command block within the
associated command block chain. If no specific advisement is made to the contrary, an initiator is to
understand that the above default policy has been applied by a target relative to when a Tap Slot enters the
"available for use" state.

Tap Slots Dedicated for Exclusive Use by an Initiator: An initiator is given the facility to request the
target to grant to it some number of Tap Sots which shall be reserved by the target for the exclusive use of
that initiator. It is required:

(a) that the initiator has completed a log-in procedure in which an initiator Identifier is assigned to the
initiator by the target, and

(b) the initiator make use of that initiator Identifier for the purpose of securing or releasing some number of
Tap Slots dedicated to its exclusive use.

Once the initiator has received both an initiator Identifier and an allocation of Tap Slots, that initiator may
send Tap packets to the given target.

As the target receives Tap packets from the initiator, the target is required to accept the Tap packets up to
the point that the target is making use of all of its dedicated Tap Slots. Each Tap packet consumes one and
only one Tap Slot. A Tap Slot must be returned for use to the initiator at a point in time no later the time in
which all commands in the associated chain have been fetched, completed, and have had completion status
returned for them. Optionally, the target may choose to release for reuse a Tap Slot at a point in time prior
to completion of all required processing and status return for all of the associated command blocks.

As a convenience to the target, the initiator Identifier is required to be used by the initiator on all Tap
packets sent to the target. The target is to use this Identifier so as to monitor the requests for Tap Slots by
the initiator. Repeated for emphasis, each Tap packet accepted by the target consumes a Tap Slot at that
target. Once the initiator has its number of dedicated Tap Slots placed into the "in-use" state, then that
initiator must wait to send a new Tap packet until it has received completion status for every command
block in at least one of its chains if that initiator expects the new Tap packet to be accepted without question
by the target.

Working Draft SCSI-3 Serial Bus Protocol 15

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Target

Use of Tap Slots from the General Pool of Tap Slots: It is considered desirable to make efficient use of
all Tap Slots available at a target. At one extreme, if only one initiator is involved with a target, then all of
the Tap Slots should be made available to that single initiator. It is also desirable to share among all
interested initiators, all of the Tap Slots provided at the target. In order to secure these objectives, the total
set of Tap Slots at a target are dived into two groups:

(@) the collection of all Tap Slots dedicated to initiators into the set of Dedicated Tap Slots, and
(b) the collection of all other Tap Slots into the General Pool of Tap Slots.

As Tap packets are received from initiators, these Tap packets are first assigned to Tap Slots dedicated to
the individual initiators. This assignment to the dedicated Tap Slots continues up to and including the point
at which all available Dedicated Tap Slots are assigned. Should a Tap packet be received from an initiator
such that all of its dedicated Tap Slots are "in-use", then the target attempts to make use of a Tap Slot from
the General Pool of Tap Slots. If such an assignment beyond the dedicated number of Tap Slots is made,
then those extra Tap Slots are assigned only for the duration of use for a single command block chain.
When all command blocks from a chain have been fetched, executed, and return made of completion status,
then that temporary Tap Slot is returned to the General Pool of Tap Slots.

It may occur that a new initiator makes a request for assignment of dedicated Tap Slots when there are in
fact Tap slots existing in the General Pool of Tap Slots. In principle, the requesting initiator should have all
or part of its request for Tap Slots satisfied, up to the point at which no Tap Slots remain in the General
Pool of Tap Slots. In a specific instance in which a request for Tap Slots is made, it may occur that the Tap
Slots in the General Pool of Tap Slots have all been given temporary assignment to other initiators. Thus, in
this specific instance, while the request for Tap Slots can ultimately be satisfied, it may not be satisfied for
some period of time until which the needed Tap slots are made free from their temporary assignment to
some other initiator. Since command block chains may be of any length, it may occur that the ability of the
target to honor the request for Tap Slots is delayed for some indefinite period of time; perhaps, a period of
time longer than the relevant time-out interval for the requesting initiator.

Editorial Note: Concern has been expressed as to adverse impacts on the initiator in the situation in which
a request for Tap Slots which should be satisfied is in fact delayed for an indefinite period of time. The
notion is that initiators have expectations as to reaction which should be made by a target based upon
published specification of functional capabilities at that target. The concern is that when these
Initialization time requests, such as request for Tap Slots, cannot be satisfied in a predictable and
understandable manner, then unacceptable problems occur from the perspective of the initiator.
comments on this point are requested.

One alternative which has been suggested is the fixed allocation of Tap Slots into one pool of Tap slots
available only for dedicated use, and into another pool of Tap Slots available for temporary and
nondedicated use. While this alternative has the opportunity to make predictable the satisfaction of Tap
Slot allocation requests from initiators, there is the problem that some number of Tap Slots in the
dedicated Pool may go unused if there fewer than the expected number of initiators making requests for
Tap Slot allocation.

5.2.5.2. Management of the Command Block Storage Resource

The Command Delivery protocol does not require a target to fetch multiple command blocks for purpose of
storing them so as to attempt overlap of processing or performance optimization. A logically correct and
internally consistent implementation is to fetch and process one command block up to the point of return of
completion status before any effort is made to fetch another command block. Thus, even when the
architected minimum number of 32 Tap slots are made active by the various initiators, the target is allowed
to process one and only one command block at a time, and process it to completion before fetching some
other command block. A more interesting case, is for the target to fetch multiple command blocks so that

Working Draft SCSI-3 Serial Bus Protocol 16

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Target

there is overlap in the processing of a command in execution phase with other commands for which pre-
processing is underway prior to entry into execution phase.

5.2.5.3. Schedule Policy for Fetching Among Multiple Command Chains

The Tap Packet (SCSI Command Initiation packet) is given an implied time stamp by the target. This
implied time stamp is the relative order of arrival of each Tap packet at the given target. The Tap packet is
associated with one and only one command block chain. Each command block in that chain is initially
given the same value of implied time stamp as was given to the Tap packet. Thus, information exists for the
target to comply with the order of execution rules established by the SCSI 3 Queueing model for treatment
of Simple, Ordered, Head of Queue, and ACA 1/O processes.

In the situation in which an Ordered chain is present along with chains of Simple 1/O processes the
following command fetch and command completion policy is required. All Simple commands with lower
value of implied time stamp must be fetched and completed prior to start of an Ordered /O process with
higher (later) value of implied time stamp. No fetch or completion of Simple I/O processes is undertaken
for those command blocks within a chain having an implied time stamp is higher (later) than the time stamp
of an Ordered chain. It is convenient to give the name "deferred chains" to these chains having a higher
(later) implied stamp than some Ordered command chain. Once completion is achieved for each command
in the subject Ordered chain, it is no longer necessary to defer fetching and completion for commands in the
previously named "deferred chains".

Within any chain, all of the included I/O processes have the same implied time stamp as dictated by the
arrival at the target of the associated Tap packet. Thus, for all chains of Simple commands with lower time
stamp than some ordered command, every command in such a Simple chain will be fetched and
subsequently completed prior to any attempt at completion for the subject ordered command.

Before further discussion on fetch policy and completion policy for chains of Simple Commands, it is
necessary to consider the case of Head of Queue chains, and also the case of ACA chains. The ACA chain
comes into existence only upon an ACA condition having been established by a target/LUN. As such, the
ACA chain becomes the only chain from which commands can be fetched and completed for the associated
target/LUN. The ACA condition is ended upon completion of the ACA command chain. In a somewhat
similar fashion, when a Head of Queue chain is accepted by a target/LUN (subject to no ACA condition
existing), that the Head of Queue chain becomes the very next chain from which an I/O process is fetched.
Once fetched from a Head of Queue command chain, the present Head of Queue command becomes the
very next command to be completed relative to all other non-ACA commands fetched but not yet completed
by the target/LUN. Within a Head of queue chain, the last command within the chain has precedence over
all earlier commands in the Head of queue chain. The first command within a Head of queue chain has
lowest precedence relative to all (later) commands within the Head of Queue chain.

Now it is appropriate to return back to the case of fetching I/O processes from chains of Simple commands.
It is required that fetching is allowed from these chains of Simple commands as per the above policy of
dealing with Ordered commands, Head of Queue commands, and ACA commands. For convenience, refer
to this set of Chains of Simple commands for which fetching is allowed as being the "Allowed Set".

From this Allowed Set, the target proceeds from one command block chain to the next as specifically
directed by the initiator. The default fetch policy is called "Queue Exhaustion" or more briefly "QE". In this
default policy, the target proceeds from start of a chain to the end of the chain. The first chain selected is the
chain having the lowest implied time stamp. Fetches (one at a time) of command blocks are made only from
that chain until the last command block has been fetched. The first chain is then “exhausted" and fetches
may begin from the chain having the next highest value of implied time stamp. In this default policy, fetches
are made via the QE approach from the various chains; starting from the chain with the lowest value of
implied time stamp and ending with the chain having the highest value of implied time stamp.

Working Draft SCSI-3 Serial Bus Protocol 17

10

15

20

25

30

35

40

45

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Target

The initiator may cause the the target to fetch command blocks from a new chain before all command
blocks are fetched from a given chain. The mechanism causing a change to a new chain is via the
ESC_Flag. If the initiator sets the ESC_Flag equal to value one in some command block, then the target is
required to fetch the next command block from a new chain (if an additional chain exists). The new chain is
that chain having the next highest value of implied time stamp. Should only one chain be known to the
target, then the next fetch would proceed from the same chain.

In the limiting case, each and every command block might have the ESC_Flag set equal to value one. In this
situation, the fetch policy followed by the target is equivalent to a Round Robin fetch policy. The Round
Robin fetch policy might be intended to ensure fairness in the treatment given to each chain when multiple
chains of Simple commands are presented to a target.

The sequence of fetching one command block within a given chain relative to all other command blocks
within that same chain is dictated by the initiator though the mechanism of the Next Command Address
field. When a change is made so as to fetch command blocks from a new chain, the first command block
from a new chain is fetched from the location recorded as being the current head of that chain. If no
command blocks have been fetched from a chain, the head of the chain is the address of the first command
block in the chain. If the given chain has had some of its command blocks previously fetched, the head of
chain is the address found in the Next Address field in the command block within that chain having the
ESC_Flag set equal to one.

Next, refer to the collection of Simple commands blocks which have in fact been fetched by the target/LUN
as the "Fetched Set". Observe, entry into the "Fetched Set" is exclusively on the basis of the policy for
fetching commands from multiple chains of commands. Once a command is within the Fetched Set, it is
left to the target to determine the appropriate order of execution. No requirement is placed by the Serial Bus
Protocol as to preferred order of execution for commands within the "Fetched Set" of Simple commands.
Thus, the target is free to execute the commands in the same order as fetched or in some other order if
advantage is felt to be gained.

As a specific emphasis point, it is allowed for a low-end target to fetch and complete commands on a one at
a time basis. Should the "Fetched Set" be restricted by target implementation to consist of only one
command, the requirement continues for that single command to be determined by application of the fetch
policy commanded by the initiator through the means of the ESC_Flag. It is encouraged for targets to
pursue a more advanced implementation such that the "Fetched Set" is allowed to be larger (perhaps much
larger) than one command.

5.2.5.4. Fetch of Command Blocks From a Chain Referenced to the Urgent FIFO

Provision is made for an initiator to send a Tap packet message to the Urgent FIFO at the target. When this
Tap packet is received at the target, then the target is required to begin fetching commands blocks from this
chain as soon as possible. The target is allowed to complete a command currently in execution. Commands
from the chain referenced by the Urgent FIFO must be fetched before command blocks of any chain
referenced to the Normal FIFO. If there are multiple active chains each of which is referenced to the Urgent
FIFO, then the fetch policy is that the subject chains must be served in the order of their arrival at the target.
Thus, the first arriving chain referenced to the Urgent FIFO must have all of its command blocks fetched
before the effort is made to fetch command blocks from a later arriving chain referenced to the Urgent
FIFO.

Once command blocks have been fetched by the target, the order of execution for these command blocks is
determined by:

(@) the queue type of the given command, and

(b) the optimization rules employed by the target.

Working Draft SCSI-3 Serial Bus Protocol 18

10

15

Model of Serial Bus Protocol X3T9.2/92-199r9
Model of Serial SCSI Target

Thus, if a given command has the queue type equal to Head of Queue, there is no choice allowed the target.
The Head of Queue command must be placed at the head of the target queue. At the other end of the
spectrum, if the fetched command block has the queue type equal Simple, then the target is free to apply its
own optimization rules for order of execution for Simple commands independent of whether they are
referenced to the Urgent FIFO or to the Normal FIFO.

5.2.5.5. Repeated Access to Same Command Block

The target is allowed the option to fetch the same command block more than one time prior to completion
of the command and return of status information and/or sense data. Should the target elect to fetch a given
command block more than one time, the requirement exists that the same contents would obtained by the
target upon each of the fetch operations toward the same command block. At least one exception is allowed
to the general notion that a target may refetch a given command block at any time, and expect to see the
same contents, field by field, being read each time. This exception is when the initiator elects to abort the
command prior to having received notification of completion for that command. In this exception
circumstance, the target is allowed to change such field as needed in order to satisfactorily mark the
command block as having been aborted.

5.2.5.6. Support of Autosense

The Serial Bus Protocol supports the model of a target device in which automatic return of sense data to the
target is enabled. A flag is provided in the command block provides a means for the initiator to inform the
target on a command by command basis whether autosense is enabled or disabled.

Working Draft SCSI-3 Serial Bus Protocol 19

10

15

20

25

30

X3T9.2/92-199r9

6. Command Transfer Protocol

6.1. Conceptual Initiator - Target Connection

Example 1 below provides a sequence of IEEE 1394 packets which illustrate the operation of the Command
Delivery protocol used by the SCSI 3 Serial Bus Protocol. The example depicts the situation within a single
initiator such that a chain has been formed consisting of three commands. The commands are referred to as
Command 1 (first command), Command 2, and Command 3 (last command). Only Command 3 has the
M_FLAG set equal to value zero since it is the last command in the chain.

initiator target

Tap on shoulder ~ -—---- > Receive Tap Packet
<----- Tap Acknowledgement

*hkkkhhkkkhkhkhkkikhkhkkikhkhkkhkkhkkhkhhkkhkihkkhkihkikiikiiikk IEEE 1394 Transaction

- Read Request (For a Command Block)

Commandl - > Read Response (Supply Command Block)
(M_Flag =1)

*hkkkhkhkkkhkhkhkkhkhkhkkikhkkkhkhkkhkhhkkhkikikihkhkihkiiikk IEEE 1394 Transaction

- Read Request (For a Command Block)

Command2 - > Read Response (Supply Command Block)
(M_Flag =1)

*hkkkhhkkkikhkhkkhkhkhkkikhkhkkhkkhkkhkhkkhkkihkkhkikkikihkiiikk IEEE 1394 Transaction

- Read Request (For a Command Block)

Command3 - > Read Response (Supply Command Block)
(M_Flag = 0)

B mmmmmmmememmeee Figure 1. Conceptual Initiator-

Target Conversation, Example 1

The initiator sends the target a SCSI Command Initiation Packet, more informally known as a "Tap" packet.
This "Tap" packet is the mechanism by which the target is informed as to the existence of a chain consisting
of one or more commands and representing "work" to be done by the target on behalf of the initiator. The
Tap packet is called the "Tap on the Shoulder" in the figure and contains the address of Command 1 within
the initiator address space. The target sends an acknowledgement to the initiator that the Tap correctly
received (CRC tests passed) and that the payload has been stored in an appropriate manner in a available
Tap slot. In an alternative scenario, the target may not have a free Tap slot and would therefor have to reply

Working Draft SCSI-3 Serial Bus Protocol 21

10

15

20

25

30

35

40

45

Command Transfer Protocol X3T9.2/92-199r9
Conceptual Initiator - Target Connection

that the the payload of the Tap packet could not be accepted. The combination of Tap on Shoulder and
associated Acknowledgement constitute one IEEE 1394 Write Transaction.

As shown in the figure, the target sends to the initiator a Read Request packet containing the address of
Command 1 as provided within the "Tap" packet. The initiator sends a Read Response Packet to target with
payload consisting of the command block associated with Command 1. The combination of Read Request
and Read Response constitute an IEEE 1394 Read Transaction. For a list of the various IEEE 1394 packet
types refer to 6.0, "Packet Types" on page 32. For information describing the format of these various types
of packets refer to Appendix A, "Packet Formats" on page 84. For the detailed contents of the Command
Block refer to 8.1, "Command Blocks" on page 41. For details of the contents of the SCSI Command
Initiation Packet refer to 9.1, "Payload of SCSI Command Initiation Packet - "Tap Packet"" on page 54.

Before continuing with Example 1, it should be mentioned that in order to simplify the drawing, no
information is provided regarding either data delivery or status delivery. The exclusive focus is upon
providing an explanation of the command delivery mechanism. In this spirit, the explanation continues as
to command delivery. The target is able to determine from the value of the M_FLAG within command
block 1 that at least one and possibly more commands follow the present command (Command 1) within the
given command chain. Each command has a field containing the address of the next command in the chain.
At a time determined by the target to be appropriate, the target sends to the initiator another Read Request
Packet containing the address of Command 2. The initiator provides another Read Response Packet now
containing the command block associated with Command 2. As a major emphasis point, this Command
Delivery Protocol leaves it to the target to decide when to fetch the next command. One choice which could
be made by a low-end target is to wait until it completes Command 1 before it attempts to fetch command 2.
Another choice is to fetch Command 2 prior to completion of Command 1 so that some degree of overlap
processing may be achieved among the commands.

Eventually the target fetches a command (Command 3 in this example) which is the last command in the
chain. Upon completion of Command 3, the target is to consider all required processing to be completed
relative to the subject command chain. The Command Delivery protocol does not require any notice to be
given by the target to the initiator concerning completion of processing for the chain. The only notice
expected by the initiator from the target is associated with making normal and appropriate indication of end
of processing for each command in the chain. In low-end targets, there would be some limit to the number
of command chains which can be accommodated at any one time by that target. There would also be a limit
on the number of Tap Slots. Upon completion of processing for one chain, the target has the ability to
accept a new command chain, assuming that it was at the limit of ability to accept new chains prior to
completion of the subject chain. The target makes an independent choice as to when it finished with a given
Tap Slot and can return it to a "pool” of available Tap Slots. The target may elect to release a Tap Slot at
the same time it releases (completes) the associated command chain. The target also has the privilege of
releasing the Tap Slot at an earlier time than it releases the command chain.

Example 2 provides a second sample sequence for the command delivery protocol. The only difference
between the situations depicted between the two examples is that example 2 explicitly shows the completion
of one chain and the start of a new chain. The second chain is made known to the target by means a second
shoulder tap. In the case shown, the first chain has been completed. At time after the end of chain 1, the
second chain is created by the initiator and then the associated tap is sent to the target.

While not shown in Example 2, it is also possible for the same initiator to have two or more chains in
existence at the same time and in processing by the same target. Thus, it is possible for the new chain to be
made known to the target by means of a new tap prior to the end of processing being reached for some
earlier chain.

initiator target

Working Draft SCSI-3 Serial Bus Protocol 22

Command Transfer Protocol X3T9.2/92-199r9
Multiple Initiator Environment

Transaction

10 Transaction

15
Transaction

20 Transaction

Tap on shoulder ~ --—---- > Receive Tap Packet
<----- Tap Acknowledgement

E R T T S P P S P S S S S e S e S e S S S S S S e S S e e S S e e I E EE 1394
<-m-e-- Read Request (For a Command Block)

Commandl ----- > Read Response (Supply Command

Block)

(M_Flag =1)

E R T T S P S S S S S S S e S e S e S S S S S S e S S e e S S e e I E EE 1394
<-m-me- Read Request (For a Command Block)

Command2 - > Read Response (Supply Command

Block)

(M_Flag = 0)

E R T T S P S S P S S S S e S e S e S S S S S S e S S e e S S e e I E EE 1394

Tap on shoulder ~ --—---- > Receive Tap Packet

<----- Tap Acknowledgement

E R T T S P S S S S S S S S S S S e S S S S S S e S S e e S o e e I E EE 1394
<-m-m-- Read Request (For a Command Block)
Command3 ------ > Read Response (Supply Command Block) (M_Flag = 0)
-- Figure 2.

Conceptual Initiator-Target Conversation, Example 2

25 6.2. Multiple Initiator Environment

At any point in time, a "Tap" packet may be received by a target from any initiator connected to the bus.
The target must accept this Tap unless the target already has reached its particular limit on the number of
tap slots it supports. When a target receives a Tap, it must store the information passed in the Tap Packet.
Provided within the Tap Packet is a 8-Byte 1394 style address of a command block and a 1-Byte Type_ID.
30 Because this amount of information is relatively small, it is expected that even low-cost targets would be

Working Draft SCSI-3 Serial Bus Protocol 23

Command Transfer Protocol X3T9.2/92-199r9
Multiple Initiator Environment

able to support a relatively large number of Tap Slots, with multiple initiators. This document sets 32 as the
minimum number of Taps that a target shall be able to process concurrently.

Editorial Note: The section "Conversation Packets" has been removed from the Serial Bus Protocol
document during the transition to Revision Level One. The content of this section has been reassigned
to other sections, mainly the sections describing support elements for the Serial Bus Protocol.

Working Draft SCSI-3 Serial Bus Protocol 24

10

15

X3T9.2/92-199r9

7. Packet Types

The IEEE 1394 High speed Serial Bus defines a number of packet types, such as read and write. These all
have a header which identifies the type of the packet and its source and destination.

To implement the SCSI 3 Serial Bus Protocol, an initiator and a target need to understand and be able to
create the following types of packets:

Quadlet Write Request
Block Write Request
Write Response
Quadlet Read Request
Block Read Request
Quadlet Read Response

N o o &~ D

Block Read Response

The SCSI 3 Serial Bus Protocol utilizes packet formats as defined by the IEEE 1394 High Speed Serial Bus
standard. In recognition of ownership of packet formats by the named IEEE standard, no change in packet
header or packet structure is considered within this document. Packet payload in the form of a command
block and a status data block is the object of definition by this SCSI 3 Serial Bus Protocol document.

Working Draft SCSI-3 Serial Bus Protocol 25

10

15

20

25

30

35

40

X3T9.2/92-199r9

8. SCSI-3 Serial Bus Protocol Support Elements

Implementation of the SCSI 3 Serial Bus Protocol may proceed by various hardware or software means.
The operational phase entails, conceptually, definition of a First In First Out (FIFO) data structure in the
target and a counterpart FIFO data structure in the initiator. A key property associated with the concept of a
FIFO is that when several data values are sent to the FIFO, each value is preserved by being stored within
the structure rather than having the last value replace and write over all previously received values.

In many instances it may be convenient to think of the FIFO as having a hardware register and acting as an
access port at the given address. It is beyond the scope of this document to suggest implementations. A
particular implementation possibility may be used as an aid to providing a more concrete and therefore a
more easily understood explanation of the protocol requirements. Likewise, in the configuration
management and in the parameter control phases, additional data structures are defined within this
document. Whenever the term register is used, this term is for convenience only and is not meant to suggest
or to dictate a preferred implementation.

8.1. Target ""Register' Definitions

As stated, the term register is used without prejudice to aid in the understanding of functional elements
required within an implementation compliant to present SCSI 3 Serial Bus Protocol. Such functions as
needed during operational, control, or configuration phases may be viewed as possessing associated
"register" addresses. Such "register”" addresses are specified within architected locations of Read Only
Memory (ROM) located within the given target.

The address of a needed data structure (or register) may be viewed as a relocatable constant for devices
implementing the Serial Bus Protocol. The notion of a relocatable constant means the following. An
architected location in the target device configuration ROM contains the address (or offset) of the given
structure within the the target address space. Vendors have the choice of which location within target
memory address space may be placed in this configuration ROM location.

It is expected that during system initialization any initiators wishing to use the target will read the addresses
of the various structures indicated below and store them internally. It would be possible for an initiator to
read the address of the registers more frequently but this would reduce system performance. As needed,
targets and/or other initiators may read such configuration ROM as provided within the target.

The following sections describe the several data structures needed to respond to unsolicited data packets
sent to a target supporting the SCSI 3 Serial Bus Protocol. These unsolicited transmissions are divided into
three categories, named, Urgent, Normal, and ACA. The Urgent category contains those packets for which
the initiator desires the target undertake a reaction on a high priority basis. These urgent items represent
management type activity as directed by some initiator. The Normal category consist of ongoing activity
which is to receive a timely reaction rather than a priority reaction. Submission of a Tap packet is a key
example of an item in the Normal category. The ACA category supports commands sent to the target for the
purpose of directing recovery and other desired actions when the ACA condition exists at the target.

The FIFO address alone is sufficient to determine the class of the packet being received and the degree of
immediacy required for the processing expected per such a packet. There are multiple different types of
packets which may be sent to the FIFO servicing Urgent items. In future expansions of the Serial Bus
Protocol there may be different type items sent to the Normal FIFO. Under these circumstances, the
Type_ID field within the packet payload must be examined in order to determine what type of processing is
to be specifically undertaken.

The case of solicited data packets occurs as a Response Packet in relation to some Read Request sent by the
target. These Response packets are expected so that the target can ensure sufficient memory to hold them.

Working Draft SCSI-3 Serial Bus Protocol 27

10

15

20

25

30

SCSI-3 Serial Bus Protocol Support Elements X3T9.2/92-199r9
Target "Register” Definitions

The Response packets are sent to the general node address of the target rather than to some specific register
address within the target. Examples of such expected response information are the SCSI command block
and the data to be placed onto target Media in relation to some SCSI Write command. Correlation infor-
mation within the header of the IEEE 1394 packet header is used to distinguish among the several different
type information sent to the general node address of the target.

Implementation Note: While is is true that multiple "register" addresses are defined below, there is no
requirement to implement each of these registers as a unique item of register hardware. It is fully
possible to consider some of these register addresses as defining a "virtual register" supported by a
much smaller collection of actual hardware. The key element of the "virtual register” is its address.
This address is intended to define the content of the payload portion of any packet sent to that address.
Also defined from the address of the "virtual register" is the nature of a special processing needed.

8.1.1. Command FIFOs

The command FIFO base address is specified in configuration ROM. Figure 3 defined the structure of the
command FIFO address.

8.1.1.1. Normal FIFO

The Normal FIFO is the Commmand FIFO address with a Reg_Type value of 00 (binary). This FIFO is
used for receiving Serial SCSI Command Initiation Packets.A very crucial element of capability for a target
is the number of "command Taps" which may be accepted from a set of connected initiators. A well con-
figured system should match the number of initiators and work process queues to known capabilities of
connected targets so that the number of instances is very small wherein a target's capability to accept
command Taps will be exceeded. In such instances where target capabilities are exceeded, then resource
conflict type of busy condition must eventually be returned back from the target to the initiator.

The format below is intended for the 64-bit address of the Normal FIFO and the Urgent FIFO. The intent is
to simplify management by the target of Tap slot resources reserved for the exclusive use of some initiator.
A key element of this format is the introduction of a densely packed 8-bit field to be used as an initiator
Identifier to distinguish among the various initiators who wish to send Tap packets to the given target. One
result of the log-in process is the assignment of the subject initiator Identifier.

As a convenience to the process by which Tap slot management occurs, it is useful to consider the address
of the Command FIFO as conveying information about the initiator who is responsible for the Tap packet.
Due to the need to maintain the relative order of arrival for Tap packets, it is important that the
interpretation be made of their being a single Normal FIFO used by all initiators rather than a collection of
multiple Normal FIFOs with one member each assigned to a given initiators. Multiple software and
hardware implementations are possible consistent with the maintenance of ability of the target to maintain
relative order of arrival of arrival of Tap packets.

Working Draft SCSI-3 Serial Bus Protocol 28

SCSI-3 Serial Bus Protocol Support Elements X3T9.2/92-199r9
Target "Register” Definitions

63 (MS) | IEEE 1394 Node | This 16-bit field follows the structure of an IEEE 1394 address and
to 48 Address conveys the the address of the given node on the IEEE 1394 bus.
This field consist of the most significant 10-bit sub-field with is the
identification number of the IEEE 1394 bus (bus_id) and the least
significant 6-bit sub-field which is the unique number of the node on
that bus (offset_id).

4710 16 | SBP target This 32-bit field constitutes the most significant 32-bits of the 48-bit
complete address of the Command FIFO within the address space
within the given target. The value of these high order 32-bits is found
at an architected location within the configuration ROM supporting
the given target. The value of the low order 16-bits is established
according to the use which is to be made of the Command FIFO. It
is observed that it is possible for multiple target devices to be
implemented at a single IEEE 1394 node. In such case, the high
order 32-bits help to distinguish among these several targets.

15t08 initiator ID The value of this 8-bit field is used as a short form identifier to
distinguish among initiators sending tap packets to this command
FIFO. 1t is intended that value zero in this field is used by an
initiator which has not yet completed log-in and therefore does not
yet have assigned to it an initiator identifier. Non-zero values for this
field are valid instances of an assigned initiator identifier.

7and 6 | Reg_Type This 2-bit field is used to identify the specific type of Command
FIFO. Values for this field are defined as follows when the initiator
ID field contains zero:

e 00 means the log-in request FIFO.
¢ 01 means the ACA FIFO (shared by all initiators).

Values for this field are defined as follows when the initiator ID field
contains a non-zero value:

¢ 00 means the Normal FIFO.
e 01 means the Urgent FIFO.

All other values for this field are reserved.

5 to 0 | Reserved This 6-bit field is required to be set to zero and is intended to
(LS) simplify initiator interfaces. One possible instance of simplification
is to provide desired address boundary placement for Tap messages.

Figure 3. Structure of Command FIFO Address
8.1.1.2. Urgent FIFO

The Urgent FIFO is the Command FIFO address with a Reg_Type value of 01 (binary). This FIFO is used
for receiving urgent taps for messages and tap packets.

Items of control information which may be sent to the Urgent FIFO are analogous to Parallel SCSI
messages and state changes. The payload of these control packets is to be placed into the same format as
the 12-byte payload used various command Tap packets. A Tap packet message is one specific instance of
a message which can be sent to the Urgent FIFO. This Tap packet message makes reference to a command
chain from which command blocks are to be fetched by the target on a priority basis.

Working Draft SCSI-3 Serial Bus Protocol 29

10

15

20

25

30

35

40

45

SCSI-3 Serial Bus Protocol Support Elements X3T9.2/92-199r9
Target "Register” Definitions

8.1.1.3. ACAFIFO

The ACA FIFO is the Command FIFO address with a Reg_Type value of 01 (binary) and a zero initiator
ID. This FIFO is used for receiving Serial SCSI Command Initiation Packets pointing to command block
chains with queue type of ACA.

It is required that the only packet sent to this FIFO is a Tap packet message making reference to a command
block chain containing only ACA commands. It is noted, that ACA commands may only be accepted by a
target which has the ACA condition being True. The payload of these control packets is to be placed into
the same format as the 12-byte payload used various command Tap packets.

8.1.2. First Failure ""Register" (optional)

The possibility exist that a request by a target to an initiator may fail. In spite of best and repeated efforts by
the target, the request may continue to fail. In a favorable circumstance, the failure occurs in relationship to
execution of a command block such that both a Status FIFO address and a Sense Data buffer address are
known and available for use in reporting the failure. In an unfavorable circumstance, the failure occurs in
the fetch of a command block so that the target does not have either an address for the Status FIFO or the
address of the Sense data buffer. In another unfavorable circumstance, the access failure occurs relative to
attempted use of either the Status FIFO or the Sense Data Buffer address.

Editorial Note: The text as now written indicates the First Failure register to be a required support element
for a Serial Bus Protocol target. Comments are requested if it is more appropriate to make this register
as well as the associate First Failure Control register to be optional. One argument in favor of making
these two registers optional is that they are an instance of having the Serial device provide a better level
of support than is the situation in a comparable case within Parallel SCSI. Provision of such improved
support would perhaps represent a needless increase in "expense" for a low end target supporting Serial
SCSI. Should these First Failure registers not be provided, the final recourse of the initiator is to rely
upon a time-out mechanism in relation to an expected reaction or response from the target which does
not occur in a timely manner.

The target experiencing a request failure such that a Status FIFO or a Sense Data buffer address cannot be
used is required to record information regarding this failure in a First Failure Register. The contents of this
register are placed in a "locked" state by the target after the given failure information has been recorded.
Release of the lock upon the First Failure register is made by an initiator through use of the associated First
Failure Control Register. If one or more additional failures occur while the First Failure register is in the
locked state, then no information need be preserved by the target regarding these failures which can not be
recorded in the First Failure register. Until the First Failure register is returned to the unlocked state, no
additional failure information can be recorded by the target in the First Failure register.

The First Failure register is defined to be 96-bits in storage capacity. Information placed into this register
shall consist of:

(@) the 64-bit address at which this failure occurred,
(b) the identification of the IEEE 1394 transaction that failed, and
(c) the type of Serial Bus Protocol activity (command block access, status block store, etc.).

The contents of this register can be written only by the target. The contents of this register can be read by
any interested node on the IEEE 1394 bus.

8.1.3. First Failure Control ""Register™ (optional)

This "register” is a 32-bit entity maintained within a target for purposes of "locking™ and "unlocking" the
associated First Failure register at that same target. The target is the only IEEE 1394 node which can lock
the associated First Failure register. The lock operation is accomplished by target by a write operation to
this register consisting of a preestablished 32-bit pattern. Such lock operation is required whenever the

Working Draft SCSI-3 Serial Bus Protocol 30

10

15

20

25

30

35

40

SCSI-3 Serial Bus Protocol Support Elements X3T9.2/92-199r9
Initiator "Register” Definitions

target writes information into the associated First Failure register. The unlock operation occurs when any
IEEE 1394 node other than the given target writes a preestablished 32-bit reset pattern into this control
register.

Editorial Note: Comments are requested as to the proposition that if a First Failure Control Register is
provided by a target, then it is useful for the target to send a Status indication of a successful unlock
operation whenever such operation occurs upon this control register. Such notification can be
considered a form of Asynchronous Event Notification. As such, the notification of an unlock operation
on this control register would only be sent to those initiators who have "signed-in" with that target as to
wanting notification of various asynchronous events at that target.

8.2. Initiator ""Register'* Definitions

In many important cases the public knowledge concerning initiator registers is different than the public
knowledge concerning target registers. In particular, the Status FIFO address is an example of a quantity
which is not put into configuration ROM and made publicly available to any interested party. The Status
FIFO address is included in the command block and thereby communicated to only the target having need
for this information.

The observation is made that implementation by the initiator for the Command FIFO set of registers is
needed only when that initiator desires to be able to function as a SCSI target device.

8.2.1. Status FIFO

The obligation of the target is to present status information back to the initiator regarding completion of a
command. A critical issue is the manner of control of interrupts to be presented to the initiator when the
target delivers operation complete status. One desired option is that the initiator have the ability to specify a
general interrupt to be presented on completion of a command. An alternative option also desired is to have
status information stored in an area which might be examined by the initiator at a convenient time rather
than on an interrupt driven time basis. In either option it is necessary for the target to provide back to the
initiator some form of correlation information between command blocks and status blocks. This Serial Bus
Protocol requires the very suitable form of correlation information which is the 64-bit address of the
associated command block. Placement of completion status information is to be made to the Status FIFO
maintained within initiator memory address space.

8.2.2. Asynchronous Event Reporting

An initiator may wish to sign-in with a target so that the initiator might receive reports of Asynchronous
Events defined per SCSI 2 and occurring at the given target. An initiator may sign-in for at most one
Asynchronous Event from any any given target. The initiator may decide not to sign-in for reporting of
Asynchronous Event reporting so that no buffer area need be reserved for this purpose.

In order to receive such Asynchronous Event information, the initiator must reserve two buffer areas for this
purpose. One buffer area is for receiving a Status Block and the other buffer area is for receiving Sense
Data. The starting address of each buffer must be made known to the target. A separate and distinct buffer
set must be maintained to receive inputs from each target from which Asynchronous Event reporting is
desired.

Whenever data is sent to either of the two buffers, the target shall consider both buffers as no longer
available. A new sign-in process is required by the initiator in order to identify a new set of two buffers for
use by a target wishing to report on other Asynchronous Events.

Working Draft SCSI-3 Serial Bus Protocol 31

10

15

20

25

30

35

40

X3T9.2/92-199r9

9. Command and Status Information

9.1. Command Blocks

As described below, the SCSI 3 Serial Bus Protocol uses a 64 Byte command block which embeds a
standard parallel data SCSI Command Descriptor Block (CDB) of up to 16 Bytes in length. Additional
standard or vendor unique CDBs may be defined for target types or functions which were not defined for
parallel SCSI, see 15.0, "Compatibility to Parallel SCSI" on page 83.

Editorial Note: The area within a Serial bus Protocol command block reserved for holding a SCSI CDB
has grown from 12-Bytes to the present 16-Bytes. No expansion has been made in command block
length in order to accommodate the longer CDB. Instead, a previously reserved area of 4-bytes
immediately following the CDB has now been formally declared as dedicated to holding a new CDB
which is expected to grow to 16-bytes in length. While no 16-Byte CDBs are formally defined at
present, there is sufficient information indicating that such a longer CDB can reasonably be expected
during the lifetime of the Serial Bus Protocol.

In support of the need by low-end target devices, the command block can be viewed a a hierarchy of
sections such that only a portion of the command block need be fetched for some specific purpose. One
instance of a specific purpose, is the operation to examine the CDBs carried by several command blocks
within a chain in order to determine which command is best suited for execution according to optimization
rules employed by the target. Once a command block has been fetched, even in part, the target is fully
responsible for noting and taking appropriate process steps for the queue type indicated by that command.
Thus, if a Head of Queue command is detected during a series of fetch operations in which only a portion of
the command block has been fetched, the target must take required and appropriate action based upon
determining that a Head of Queue command is present. At time of placing a given command into execution,
the target must ensure that is has access and required knowledge of the information contents conveyed by
the entire command block.

In support of initiator units in which memory cache is employed, the requirement is set that the command
block is to start upon an 8-Byte boundary. Additionally, each address in the command block is to start as
well upon an 8 Byte boundary. In conformity to the IEEE 1394 standard, each of these addresses is an 8-
Byte quantity. Observe, each command block is a 64-Byte quantity. Thus when command blocks are placed
back to back in initiator memory space, and the very first command block starts on an 8-Byte boundary,
then each of the following command blocks in a chain also starts on the desired 8-Byte boundary.

Contents of the first two quadlets of the Serial Bus Protocol Command Block have been established so as to
enhance compatibility with Serial SCSI as supported by the Fibre Channel. Specifically, the placement of
the queue type field is intended to agree with the bit positions adopted within the Fibre Channel SCSI
packet for indicating Simple, Ordered, and Head of Queue Types. Observe closely that the Serial Bus
Protocol treats this subject as a 3-bit coded field in which only one queue type is valid at any one time. In
contrast, the Fibre Channel SCSI packet treats this field as independent Flag bits, such that more that one
queue type indication is possible. Resolution of this difference is needed.

Another aspect of the Serial Bus Protocol command block is taken from the Fibre Channel SCSI packet and
may need interpretation based on differences between the Fibre Channel and IEEE 1394. This aspect is the
notion of indicating whether the direction of flow for data transfer is the same as the direction of flow for
Command Transfer. In the case of the Serial Bus Protocol, the direction of command transfer is exclusively
from the initiator node to the target node.

Finally, the placement of the Transfer length field is selected to agree with the placement of the similar field
within the Fibre Channel SCSI packet.

Working Draft SCSI-3 Serial Bus Protocol 33

10

Command and Status Information
Command Blocks

X3T9.2/92-199r9

Byte 0 1 2 3

0 Next Command Address (MSQ)

4 Next Command Address (LSQ)

8 Reserved LUN

12 Codes Flags

16 CDB (MSQ)

20 CDB

24 CDB

28 CDB (LSQ)

32 Transfer Length

36 Control | Reserved | Sense Length
40 Data Buffer Address (MSQ)

44 Data Buffer Address (LSQ)

48 Status FIFO Address (MSQ)

52 Status FIFO Address (LSQ)

56 Sense Buffer Address (MSQ)

60 Sense Buffer Address (LSQ)

Figure 4. Asynchronous Command Block
Field Function

Next Command Address

This field contains a 1394 format 64-bit address which is used by the target when it
fetches the following command from the initiator. The least significant three bits of this

field must be equal to value zero. A full description of the mechanism by which the target

fetches commands is presented in 5.0, "Command Transfer Protocol” on page 28.

This 16-bit field carries the Logical Unit Number (LUN) as specified in the SCSI Identify

message. Unused bits are reserved. It is observed that SCSI 2 uses only 3-bits and these
are the right justified bits in this field. SCSI 3 is anticipated to expand this field to at least
5-bits, and some argue this field needs to be larger than 8-bits in order to support future

Reserved This 16-bit field is reserved.
LUN

RAID applications.
Codes

for this command block.

This 16-bit field is a coded field which identifies format, function code, and queue type

Bit(s) Name Function
15 (MS) to 14 | Format These two bits identify the format of the command
Identifier block. Values for this field are defined as follows:

* Value 01 confirms this to be a command block
as specified by the Serial Bus Protocol.

All other values for this field are reserved.

Working Draft SCSI-3 Serial Bus Protocol

34

Command and Status Information

Command Blocks

Flags

X3T9.2/92-199r9

13t0 8 SBP Function | These 6-bits provide information as to whether the
Code command carried by this command block is a
general purpose asynchronous command, is an
Isochronous command or supports some control
function of the Serial Bus Protocol (SBP). Values
for this field are defined as follows:
* Value 000000: this is a general asynchronous
command (Carries a CDB).
* Value 000001: this is an Isochronous
Port_Setup command.
* Value 000010: this is an Isochronous
Port_Append command (Carries a CDB).
* Value 000011: this is an Isochronous
Port_Teardown command.
* Value 000100: this is a SBP Request for an
initiator Identifier.
* Value 000101: this is a SBP Request/Release
for Tap slot(s).
* Value 000110: this is a SBP Request/Release
notification of asynchronous events.
All other values for this field are reserved.
Note: (1) Refer to Appendix C for a description of
the Isochronous commands.
Note: (2) Refer to the section entitled, "SBP
Control Protocols" for a description of the SBP
Request/Release commands.
7103 Reserved These 5-bits are reserved.
2t0 0 (LS) Queue Type * Value 100 means Tag Type Autocontingent

Allegiance (ACA).
* Value 000 means Tag Type is Simple Tag.
* Value 010 means Tag Type is Ordered Tag.
* Value 001 means Tag Type is Head of Queue.

All other values for this field are reserved.

Figure 5. Codes Field
The 16-bit flags field currently has the following bits defined. All bits not specified are

reserved.
Bit(s) Name Function
15 (MS) to 13 | Reserved These 3-bits are reserved.

Working Draft SCSI-3 Serial Bus Protocol

35

Command and Status Information
Command Blocks

X3T9.2/92-199r9

12

Read Data

When set equal to value one, this bit indicates the
direction of I/O data movement is from the target
to the initiator. This is opposite to the direction of
command movement.

Note: If both the Read Data Flag and the Write
Data Flag are set to value zero, then no data
transfer is to occur.

11

Write Data

When set equal to value one, this bit indicates the
direction of 1/0O data movement is from the initiator
to the target. This is the same as the direction of
command movement.

Note: It is not valid for both the Read Data Flag
and the Write Data Flag to be set to value one
at the same time.

10

L_Flag

When set equal to value one, the CDB field is
carrying a SCSI Linked command. This flag must
have value zero for the last command in a
collection of Linked commands.

M_Flag

When set equal to value one, the target must fetch
the next command when it is ready. If this bit has
value zero, the present command is the last in the
chain from the initiator.

ESC_Flag

This is the End of Sub_chain Flag. When set equal
to value one, the present command block marks the
end of one sub-chain and the Next Command
Address field marks the start of a new sub-chain.
The next fetch of a command block will not be
from the new sub-chain unless it is the only chain
known to the target. When set equal to value zero,
the next command block is to be fetched from the
address indicated by the Next Command Address
field and this next command block is considered to
be a member of the same sub-chain as is the
present command block. This flag has meaning
only when the M_Flag has value one.

A Flag

When set equal to value one, the initiator wishes
this command to be aborted. If this bit has value
zero then no expression of intent has been made to
abort this command. For information regarding the
SCSI Abort message please refer to *****,

6to3

Reserved

These 4-bits are reserved.

S _Flag

When set equal to value one, this bit indicates the
initiator memory scatter / gather function is being
invoked for the present command.

Working Draft SCSI-3 Serial Bus Protocol

36

10

15

20

25

30

Command and Status Information X3T9.2/92-199r9
Command Blocks

1 O_Flag When set equal to value one, this bit indicates the
target must transfer data in sequential order
to/from the initiator. If this bit has value zero, the
target may transfer data out of order.

0 (LS) C _Flag When set equal to value one, this bit indicates an
automatic clearing of any contingent allegiance
conditions which may occur as a result of this
command. When this bit is reset to value zero,
contingent allegiance conditions are handled as in
SCSI 2 and SCSI 3. The target waits for action by
the initiator.

Figure 6. Contrl Flags
CDB This field carries a standard SCSI CDB.

Transfer Length The following definition of meaning for this field applies to the case of the SBP
Command Operations Code equal to value (000 binary), which means the command block
carries a general asynchronous command. Refer to the description of Isochronous
commands and to the description of SBP Request/Release commands for the meaning of
this field in either of these contexts.

For general asynchronous commands this field supports one of two functions, depending
on the value of the S_Flag within the Flag field of this command block. When the S_Flag
has value equal to one, this field supports the initiator memory scatter/gather function,
which is a required support capability provided by the target. The length value indicates
the number of Bytes of scatter/gather entries which are to be found in the list found at the
1394 style address specified by the Data Buffer Address entry of this command block.
When the S Flag has value equal zero, the present command does not involve
scatter/gather, and the Transfer Length field contains the number of bytes which are to be
transferred as a result of successful completion.

Control Reserved
This 16-bit field is reserved with the intention to possibly relocate control function
specified elsewhere in the command block to this location.

Editorial Note: Consideration is being given to relocate data transfer control flags such as the S_Flag
and the O_Flag from the flags field to this field. In addition, consideration also is being given to
place in this field selected data transfer control parameters associated with the IEEE 1394 High
Speed Serial bus in this field. Examples of IEEE 1394 parameters would include a statement of the
data transfer rate and maximum data packet size supported by the IEEE 1394 bus.

Reserved This 8-bit field is reserved.

Sense Length This 8-bit field represents an unsigned number which specifies the number of 16-Byte
units of length for the Sense Data buffer.

Data Buffer Address
The following definition of meaning for this field applies to the case of the SBP
Command Operations Code equal to value (000 binary), which means the command block
carries a general asynchronous command. Refer to the description of Isochronous
commands in Appendix C for the meaning of this field in the Isochronous command
context.

Working Draft SCSI-3 Serial Bus Protocol 37

10

15

20

25

30

35

Command and Status Information X3T79.2/92-199r9
Status Block

For general asynchronous commands the Data Buffer Address field contains an IEEE
1394 format 64-bit address that the data should be written to or read from. It is observed
that this data address may or may not be associated with the same node (initiator) having
sent the given command. If the required feature of initiator memory scatter/gather has
been indicated by means of the S_Flag having value equal one, then the Data Buffer
Address location contains the scatter/gather list. As an additional observation, the Data
Buffer Address has no specific alignment restriction so that it can point to a byte
boundary.

Status FIFO Address
This field contains the IEEE 1394 style, 64-bit address of the Status FIFO associated with
the given initiator responsible for the associated command.

Implementation Note 1: The Status FIFO address can be used by the initiator to control whether or
not interrupts are to be signalled to the initiator upon receipt of a status block. Thus, the initiator
can elect to accumulate Status Blocks within a given Status FIFO and then process them at leisure.

Implementaton Note 2: Attention is called to the fact that alignment restrictions apply to certain types
of objects pointed to by an IEEE 1394 style address. In particular, the Status FIFO (also the
Command FIFO) must be aligned on a 4 Byte boundary. Thus, low order two bits of the Status
FIFO address must be zero with the consequence that the least significant bit can used as a Validity
Indicator for that address. Should the Status FIFO address be indicated as not valid, (least
significant bit of the address has value equal to one), this means can be used by the initiator to
inform the target that status block information should not be returned to the initiator by means of
the Status FIFO.

Sense Data Buffer Address
This field contains the IEEE 1394 style, 64-bit address of the Sense Data Buffer
associated with the given initiator responsible for the associated command.

9.2. Status Block

The Status Byte for a Serial SCSI command is similar to the Status Byte in Parallel SCSI. The Serial SCSI
Status Byte is embedded in a packet with 12-Byte payload (the Status Block) which is used to mark the end
of a command under the SCSI 3 Serial Bus Protocol. The Serial SCSI Status Byte is intended to be upward
compatible to the Status Byte in SCSI 2. For conditions under which the command completes with good
status, this single Status Byte is the only completion status returned back to the initiator. Other fields in the
Status Block serve to: (a) identify the payload as being a Status Block, and (b) to facilitate correlation of the
Status Byte to the associated command. Depending on the command and on the SCSI device, sense data
may be available even when the command completes with good status.

Byte 0 1 2 3
0 Command Address (MSQ)
4 Command Address (LSQ)
8 Type_ID Status Reserved Status Byte per SBP |Status Byte per SAM|
Block Code = 80 hex

Figure 7. Status Block

Command Address
This is the address from which the command block was read. This value is returned to the
initiator in the status packet to correlate the status with the command.

Type_ID This field confirms that the present data block is a Status Block.

Reserved This field is reserved.

Working Draft SCSI-3 Serial Bus Protocol 38

10

15

20

25

30

Command and Status Information X3T9.2/92-199r9
Initiator Scatter/Gather List

Status Byte per SBP
This is the status Byte as defined for use within the Serial Bus Protocol architecture to
describe completion of events or other information uniquely defined within the Serial
Bus Protocol.

Editorial Note: Consideration is being given to define an encoding of information which would assist
the initiator in knowing when Tap Slots have been made available for use by the given initiator.
Current thinking is that providing such information is optional to the target. Should the target
decide to supply such information, then in the current thinking, the information would be in the
form of the number of Tap Slots dedicated for use exclusively to the given initiator which are
presently available as of the time at which completion status is returned for this command.

Status Byte per SAM
This is the Status Byte as defined in the SCSI Architecture Model (SAM) document. It is
intended that this status definition be upwardly compatible to status definition existing
within SCSI 2.

9.3. Initiator Scatter/Gather List

The scatter/gather list shall consist of one or more 16-Byte units in the format depicted below. While there
is no restriction against creation of a scatter/gather list consisting of only one 16-Byte unit, such usage
would be wasteful of initiator memory. If there is only one element to the scatter/gather list, that single
element could be accommodated much more efficiently using only 12-Bytes within the command block.

Byte 0 1 2 3
0 Data Buffer Address (MSQ)
4 Data Buffer Address (LSQ)
8 Reserved
12 Transfer Length

Figure 8. Scatter/Gather List Format -- Single 16-Byte Unit

Data Buffer Address
This field contains an IEEE 1394 format 64-bit address that data should be written to or
read from. It is observed that this data address may or may not be associated with the
same node (initiator) having sent the given command. It is a requirement per the IEEE
1394 standard that at least the low order two-bits be zero as a data buffer address is
specified as being a four-Byte aligned address.

Reserved This is a 32-bit field is reserved. The presence of this field ensures that the multiple Data
Buffer Address entries within this list are each separated from one another by some
multiple of 8-Bytes.

Transfer Length This 32-bit field contains the number of bytes which are to be transferred as a result of
successful completion.

Working Draft SCSI-3 Serial Bus Protocol 39

10

15

20

25

30

35

X3T9.2/92-199r9

10. Payload Specification For Command Transfer Packets

This section details the contents of the payload for those packets used by the Command Transfer Protocol.
Refer to Appendix A for a summary of the format of the IEEE 1394 packets used to transfer these payloads.
10.1. Payload of SCSI Command Initiation Packet - ""Tap Packet"

The packet carrying this payload is to be sent to the Destination Offset address within the target
representing the Normal FIFO.

Byte 0 1 2 3
0 First Command Address (MSQ)
4 First Command Address (LSQ)
8 Type_ID Status Reserved
Block Code = 01 hex

Figure 9. Payload of SCSI Command Initiation Packet - "Tap" Packet
Field Function

First Command Address
This 64-bit field carries the Address of the first command in a command chain.

Type_ID The value 01/Hex in this field confirms the present packet payload to be the payload of a
SCSI Command Initiation packet.
Reserved This 24-bit field is reserved.

10.1.1. Response Reactions to Tap Packet

There will always be a reaction to a SCSI Command Initiation Packet (Tap Packet) and this reaction will
contain one element or two elements depending on:

(@) whether the target has a Tap slot available to store the Tap packet, and

(b) whether the target does accomplish every element of its mandated reactions in the time period before
the IEEE 1394 bus must be released.

The term "Unified Reaction™ is used to refer to the case in which the target is able to accomplish all of its
mandated reactions in the time interval before the IEEE 1394 bus must be released and thereby made
available for arbitration by some other node. The mandated reaction will always consist of sending an IEEE
1394 defined acknowledgement back to the initiator. Depending on the situation, the mandated reaction
may also consist of sending an IEEE 1394 defined Write Response Packet back to the initiator. The term
"Unified" is based on IEEE 1394 terminology for Transaction types. Unified, in this context, means that if
a Write Response Packet is required as an element of the reaction, then the Response Packet is placed onto
the IEEE 1394 bus shortly after the Acknowledgement reaction is sent, and also in the time interval before
the IEEE 1394 bus must be released by the target.

The Term "Split Reaction" is used to refer to the case in which the target must send a Write Response
Packet as an element of its reaction back to the initiator, but cannot send this packet in the time interval
before the IEEE 1394 bus must be released. Observe closely, the present discussion applies only in those
instances in which a required part of the reaction by the target involves sending a Write Response Packet
back to the initiator. In all instances, it is required that the target provide back to the initiator an
acknowledgement reaction before the bus is released. The term "Split Reaction" is based on IEEE 1394
terminology for Transaction types. Split, in this context means that within a IEEE 1394 defined time
interval, the target must begin a new transaction (the split transaction), for the purpose of sending the Write

Working Draft SCSI-3 Serial Bus Protocol 41

10

15

20

25

30

35

40

45

Payload Specification For Command Transfer Packets X3T9.2/92-199r9
Payload of SCSI Command Initiation Packet - "Tap Packet"

Response Packet back to the initiator. Per requirements of IEEE 1394, if a Split Transaction is involved as
a reaction to an earlier transaction, then the acknowledgement of "pending™ must be made as the end to

that earlier transaction.

Editorial Note: It has been expressed by many parties that it is highly desirable to make it almost
impossible for a target to reject a Tap Packet. Toward this objective of ensuring that Tap Packets are
not rejected by targets, it appears that enhancements to the Tap Protocol need to be defined. Current
exploration is centering on providing means to confirm to an initiator that the target has reserved a
some number of Tap Slots for exclusive use by that initiator. It is desired to minimize the degree of
coordination undertaken by targets relative to allocation of Tap slots among the initiators. In this
exploration, the initiators would collaborate with each other so as to determine the division of Tap Slots
within a given target. The manner of collaboration among initiators does not need to be stated by the
Serial Bus Protocol. Current exploration thus proceeds from the assumption that initiators have agreed
to some allocation of Tap Slots. The Serial Bus Protocol would then specify: (a) the means whereby a
given initiator issues a request for tap slots to a given target, (b) the means whereby a target confirms
an allocation back to the requesting initiator, and (c) the requirement that target devices manage Tap
Packet receptions consistent with allocation commitments made to the various targets.

Current thinking on this subject is in favor of making it optional for targets to support the above
scheme for management of Tap Packet slots. It would be mandatory for a target to specify within a
configuration ROM (or by some other means) whether that target does, or does not support the above
scheme for management of Tap Slots.

10.1.1.1. Response Reactions When Tap Packet is Accepted

When the target is able to accept a SCSI Command Initiation Packet (Tap Packet), there is only one element
required as part of the target reaction. This required reaction is to send the IEEE 1394 acknowledgement
code of "complete". The initiator then is to have the understanding that the Tap Packet has been accepted by
the target and no further activity is required of the initiator other than to be prepared to receive Read
Requests Packets sent by the target in order to fetch command blocks.

Implementation Note: Per the IEEE 1394 standard, an alternative reaction is possible by the target in the
circumstance in which that target can accept a Tap Packet. By action of the Serial Bus Protocol, this
alternative reaction is prohibited. The alternative reaction consists of the Split Transaction scenario.
Due to slow processing within the target, it may occur that certain "housekeeping" operations are not
completed in time to justify the acknowledgement code of "complete". The IEEE 1394 standard
permits an acknowledgement code of "pending" and a later submission of a Response Packet carrying a
response code of "resp_normal”. Per requirements of the Serial Bus Protocol, a compliant target must
provide processing capability sufficient to ensure an acknowledgement code of "complete" in all
circumstances in which a Tap Packet has been accepted by that target.

10.1.1.2. Response Reactions When Tap Packet is Not Accepted

In spite of best efforts by configuration management, it is possible that circumstances will arise such that a
Tap Packet cannot be accepted by the target. Under these circumstances it is necessary to use suitable
means to inform the relevant software within the initiator that some form of retry activity is necessary in
order to reach the condition in which the target can accept the Tap packet.

If the target cannot accept a Tap Packet, by requirement of the Serial Bus Protocol, the reaction of the target
must consist of two elements and these are forced to be satisfied by means of the IEEE 1394 Split
transaction scenario. The first element of the target reaction consist of sending the acknowledgement code
of "pending" back to the initiator. By operation of the IEEE 1394 standard, the code of "pending" forces the
target to send an explicit Write Response Packet. Additionally, this Write Response Packet is sent in a new
IEEE 1394 bus arbitration interval thereby making this a Split Transaction. The Write Response Packet has

Working Draft SCSI-3 Serial Bus Protocol 42

10

15

20

Payload Specification For Command Transfer Packets X3T9.2/92-199r9
Command Read Request

no payload nor does it need a payload in order to convey a reaction to the circumstance that the target
cannot accept a Tap Packet. This Response packet does have a Header containing among other fields, a 4-
bit R_Code field. The R_Code field contains response code and this code must contain the "resp_conflict"
value when the target cannot accept a Tap Packet. It is by means of the R_Code that initiator software is
made aware that a Tap Packet has not been accepted by the target. Initiator software may then decide the
best manner to repeat the sending of the given Tap Packet to the target.

Implementation Note: Per the IEEE 1394 standard, alternative reaction is possible by the target in the
circumstance in which that target cannot accept a Tap Packet. By action of the Serial Bus Protocol,
this alternative reaction is prohibited. The alternative reaction consists of sending an IEEE 1394
acknowledgement code of busy X. Still other alternatives are sending IEEE 1394 acknowledgement
codes of busy A or busy B. In all three of these acknowledgement codes, the appropriate initiator
reaction consists of an retry transmission of the Tap Packet with the retry decision made automatically
by the IEEE 1394 hardware and no involvement by the initiator software. Due to various steps taken to
make it a remote circumstance for a Tap Packet to be rejected, it is more appropriate to have the
initiator reaction explicitly determined by initiator software.

10.2. Command Read Request

10.2.1. Request Payload

A target requests a command by sending a Read Block request packet to the address indicated in the "Tap"
packet or to the address specified in the previous command. Normally, this request will be handled as a
split transaction by the initiator.

10.2.2. Response Payload

The response payload consist of the 64 Byte combination of Baseline plus Extended portion of the
command block, or the 48-Byte Baseline portion, as originally requested by the target.

Working Draft SCSI-3 Serial Bus Protocol 43

10

15

20

25

X3T9.2/92-199r9

11. Data Transfer Protocol

11.1. Asynchronous Transfer

The transfer of all data associated with the execution of a command is accomplished by standard format
(per IEEE 1394) block read request and block write request packets sent by the target to the initiator.

The starting address the block data is read/written from/to is the address passed in the Data Buffer Address
field in the command block. For each packet read/written from/to a buffer, the address is specified by the
target and placed in an appropriate type request packet. As necessary, the target must increment the
referenced data address by the packet size for subsequent packets to the same buffer unless the out-of-order
flag bit has enabled the target to transfer data in any order it desires. In that case the target must insure the
starting address of each packet is set properly.

11.1.1. Data Read From Device Medium

This is the case where the device is producing data to be transferred to the initiator. This is done using a
series of Write Block request packets. The target is responsible for updating the request packet destination
offset field to reflect progress made in moving through the initiator buffer.

The size of the data packets sent by the target to the initiator is of a maximum defined in the device ROM or
dictated by the speed of the particular IEEE 1394 Serial Bus. In the case of Write Block packets sent from a
target to an initiator, it is desired that after receiving a data packet from a target with the header and data
CRC correct, the initiator should return an acknowledge code indicating "complete”. If an initiator is
unable to receive a packet because of temporary buffering limitations or receives a packet with incorrect
CRC, the initiator should return an appropriate acknowledge code as dictated by the IEEE 1394 standard.

11.1.2. Data Written To Device Medium

For the case where the target is receiving data from the initiator, it requests this data via Read Block request
packets. It sends these requests as it requires the data. Hence the target automatically paces the transfer.

In the case of Read Block request packets sent from a target to a initiator, the target may send multiple
outstanding requests to the initiator provided that each outstanding request (split-transaction) has a unique
transaction label (number) in the Read Block request packet header so that the multiple response packets
being returned to the target may be correlated to the original requests.

Working Draft SCSI-3 Serial Bus Protocol 45

10

15

20

25

30

35

40

X3T9.2/92-199r9

12. Status Transfer Protocol

At the end of a command the target must return status information to indicate success or failure. This is
done using a Write Block request packet. The packet is sent to the address specified in the Status Buffer
Address field passed in the command block. Payload of the packet is the 12-byte Status block. In reply to
the status packet, a split transaction is allowed if needed; otherwise, the initiator should return a "complete"
acknowledge code.

In the most frequent case, the completion of an 1/0 process is with "good status" and no specific action is
required by the initiator. The target sends to the initiator a 12-Byte Status Block directed to the Status FIFO
address specified by the initiator in the command block.

Should the completion status be "bad", then both a Status Block and a Sense Data Block would be made
available to the initiator. If the initiator has specified automatic presentation of Sense Data for this
command, then the target first sends to the initiator a Write Request packet which contains the Sense Data
as payload. This Sense Data is sent to the Sense Data Buffer address specified by the initiator in the
associated command block. As a second operation, the target sends to the initiator a Write Request packet
with the 12-byte Status Block as payload. This Status Block is sent to the Status FIFO specified by the
initiator in the associated command block.

If the initiator does not want automatic presentation of Sense Data, then the target holds this information for
request by the initiator as provided by SCSI 2. The target still must send the Status Block to the initiator in
this situation of completion with "bad" status.

12.1. Target Reaction to Initiator Failure to Accept a Status Block

It can be argued that a similar condition exists at the initiator relative to acceptance of status blocks as exists
at the target relative to acceptance of Tap Packets. In both instances, there exists the possibility that the
intended destination cannot accept the given 12-Byte packet payload. While this may be true in theoretical
terms, there is a substantial difference in the nature of the two situations. For a variety of reasons, there are
considerably more memory storage resources available to the initiator as are available to the target.
Additionally, the initiator is presumed to be expecting the return of one status block for every command
block which was allocated. Consequently, there is the notion of a much greater level degree of obligation
and commitment by the initiator to be in a position to accept a status block whenever it might be sent by the
target.

Notwithstanding the commitment of the initiator to accept status blocks, it is still possible for momentary
circumstances to exist which lead to the initiator rejecting a given status block. Repeating for emphasis, it
should be the objective that initiators never reject a status block. In the rare circumstance that an initiator
does reject a status block, it should involve a situation in which the initiator shall very quickly be able to
accept that previously rejected status block. Additionally, the target may not have the ability to undertake a
higher level software protocol for reacting to a rejected status block. Thus, the mechanism for dealing with
a rejected status block should be based on an automatic retry wherein IEEE 1394 hardware at the target
attempts a retransmission of the status block at an early opportunity.

Based upon the above discussion, should an initiator need to reject a status block (for reasons of not having
sufficient storage to accept it), the initiator reaction is to respond with an IEEE 1394 acknowledgement
code of busy X to the target. The reaction of the target to this acknowledgement code is to make a
hardware initiated attempt to resend the status block.

Should all retry efforts by the target fail with regard to acceptance by the initiator of the Status block, then
the target must record the appropriate information in its First Failure register.

Working Draft SCSI-3 Serial Bus Protocol 47

10

15

20

25

30

35

40

45

Status Transfer Protocol X3T9.2/92-199r9
Target Reaction to Abort Tag Request From an Initiator

12.2. Target Reaction to Abort Tag Request From an Initiator

The Serial Bus Protocol with its facility for command chains is a substantially different environment than
the environment in Parallel SCSI. A key aspect of this difference is the circumstance that a target may have
fetched certain of the commands from a given chain while other commands remain within initiator memory.
The general existence of additional commands yet to be fetched is made known to the target by means of
the M_Flag. No detailed knowledge concerning any of these unfetched commands is available to the target
until the associated command block is actually fetched.

Thus, relative to an ABORT TAG message from the initiator, one of three circumstances may exist:
(1) the command has been fetched and is completed,

(2) the command has been fetched but no attempt at execution has been made by the target, or

(3) the command has not yet been fetched by the target.

In conformity to SCSI 2, no reaction is required by the target relative to a command which has been
completed and is now requested to be Aborted by the target. For such a completed command, the target
returns the same completion status as would have been the case had the ABORT TAG message not been
received by the target. In passing, it is observed that no mechanism exist within SCSI to send two different
and possibly conflicting sets of completion status information about the same command.

For the case in which the command has been fetched, but not yet completed, the ABORT TAG message
provides the target with all needed information to make the required reaction. The target is to Abort the
associated 1/0 process and make return of status information consistent with the attempt to Abort the
subject command block. It would appear that two new STATUS Codes are needed for this Abort situation.
One of the new STATUS Code values would indicate that the Abort was successfully accomplished. This
new STATUS Code value shall be 44/Hex. The other new STATUS Code value shall be 46/Hex and this
applies to when the Abort operation could not be completed in a successful manner.

For the case in which the command has not yet been fetched, it is desired to use the A_Flag within the
command block rather than save the ABORT TAG message as defining a future work item for the target. In
this circumstance in which the given command is unknown to the target because the command block has not
yet been fetched, the target is to ignore the ABORT TAG message. Instead, the target is to fetch each
command block in the normal manner. Upon receipt of a given command block, the target is to check the
value of the A_Flag. If the A Flag has value equal to one, then this command is to be Aborted. As
previously discussed, the target makes return of a Status block in which the STATUS Byte has value
44/Hex or value 46/Hex depending upon whether the attempt to abort the command was successful or not
successful. No response from the target to the initiator is required in order to indicate the situation that the
ABORT Tag message was discarded and the abort operation proceeded on the basis of examining the
A _Flag.

12.3. Target Reaction When a Cmmand Block Cannot Be Fetched

Another new circumstance arises in Serial SCSI, and this is the case in which all attempts fail regarding the
fetch of a command block from a chain. The situation faced by a target is that the information known to the
target is the starting address of the given command block. Since the command block could not be fetched
(for whatever reason), the target does not have the address of the Status FIFO which is to be used for
purposes of reporting on attempts to execute the given command. Neither does the target known if this is the
last command block in the chain or if there are other command blocks in the same chain following the
subject command block. Based on the format of the command block address, the target does know the the
16-bit IEEE 1394 bus address of the initiator having responsibility to provide the subject command block.

It would appear the target is faced with one of two choices. First, the target might ignore the situation and
consider the given command chain to be terminated and thereby requiring no further attention. A possible

Working Draft SCSI-3 Serial Bus Protocol 48

10

15

20

25

30

Status Transfer Protocol X3T9.2/92-199r9
Target Reaction to a Unit Attention Condition

outcome from this reaction by the target is that the initiator will detect that all action has ceased relative to
command blocks in the subject chain. Should the initiator be able to detect this state of affairs, then the
initiator could instigate appropriate recovery action. The second alternative is that the target sends an
unsolicited status block to some prearranged Status FIFO previously established for receiving unsolicited
packets at an initiator.

The decision reached in the Serial Bus Protocol is in favor of having the target:
(a) abandon the given command chain and
(b) record appropriate information about the failure in the First Failure register maintained by that target.

No further reaction on the part of the target is required to inform the initiator that action has been
terminated relative to the given chain. Information in the First Failure register is to be maintained in a
"locked" state by the target until a release of the lock is made through use of the associated First Failure
control register by some other node.

As further aspects of the reaction by the target when a command block cannot be fetched, the target shall
not declare an ACA condition relative to the given initiator. No sense data need be retained as the target has
included within the contents of the 12-Byte payload of the unsolicited packet all available information
concerning the situation. Normal processing shall continue regarding any other command block chains
associated with the given initiator and the given target/LUN.

12.4. Target Reaction to a Unit Attention Condition

A Serial Bus Protocol SCSI 3 target is required to declare a Unit Attention Condition for the same reasons
and under the same circumstances as would be the case of a SCSI 2 target device. Further elements of the
target reaction to a declared Unit Attention Condition are based on the notion that initiators sign-in with a
target if they desire to receive notification of an Asynchronous Event from that target. Registration with a
target means that the initiator has supplied the address of a status Block buffer and the address of a Sense
Data buffer for purposed of receiving a report of an Asynchronous Event.

If an Asynchronous Event does occur, the target shall send an appropriate status block and appropriate
sense data to the buffer address of each initiator having signed-in to receive notification of an Asynchronous
Event. After transmission of the notification information, the target shall consider all initiators as having
been taken out of the sign-in condition for purposes of receiving any further notification of an
Asynchronous Event. Explicit and new sign-in action is required by each initiator wishing to receive
notification regarding any further asynchronous Event.

Working Draft SCSI-3 Serial Bus Protocol 49

10

15

20

25

30

35

X3T9.2/92-199r9

13. SBP Control Protocols

Additional protocols are required within the Serial SCSI environment to support the ability of the initiator
to interact with targets regarding management of:

* Tap Slot resource
» Sign-in for notification of asynchronous events
» Information contained in the First Failure register

The assignment of a short form initiator identification number is the initial as well as the most critical
element within these SBP control protocols. targets are not allowed to respond to SBP control protocol
requests from an initiator unless that initiator has previously obtained a short form initiator identification
number from that target. As a further consequence of not having obtained a short form identification
number, an initiator will not be able to secure a Tap Slot from a target and will thus not be able to secure
acceptance by the target of a Tap packet sent from that initiator.

Thus, the key to securing interaction between targets and initiators for purposes of the command transfer
protocol is an initialization phase in which an initiator executes a "log-in" procedure with a given target. As
the outcome of a successful log-in operation, an initiator is assigned a short form (8-bit) identification
number. As a required second phase of the initialization process, a "logged-in" initiator uses its short form
identification number to request some number of Tap slots reserved for exclusive use by that initiator at the
target.

As an optional third phase of the Initialization process or an optional procedure at any other time, a
"logged-in" initiator may sign-in with the target for the purpose of receiving notification of asynchronous
events at that target. An additional interaction between a "logged-in" initiator and a target is the purpose of
a write operation to the First Failure Control Register, should that optional register be implemented at the
given target. Any initiator, logged-in or not, may read the First Failure register if this register exists at the
target.

13.1. Log-in Protocol

The log-in protocol is the first phase of an initialization procedure between a given initiator and a given
target. Log-in is started by an initiator sending the Log-In_Request message to the urgent FIFO at the
subject target. The log-in message contains the address at the initiator of the command block which contains
the details of the log-in request. Refer to the section entitled, "Log-In_Request Message Payload" for details
concerning the format of the log-in request message.

These results of log-in processing by the target are sent in a short (4_Byte) data packet to the Data Buffer
address specified in the command block. If the log-in is successful, then the most significant item of
returned information is the short form (8-bit) identifier assigned by the target for the use of the initiator. An
additional item of returned information is a Status Block containing an SBP Status Byte carrying a code
confirming the log-in to be successful. If the log-in was not successful, the returned code has an appropriate
value indicating the failure.

Working Draft SCSI-3 Serial Bus Protocol 51

10

SBP Control Protocols X3T9.2/92-199r9
Request/Release of a Tap Slot

Byte 0 1 2 3

0 Reserved

4 Reserved

8 Reserved LUN

12 Codes Flags

16 Reserved

20 Reserved

24 Reserved

28 Reserved

32 Transfer Length (04h)

36 Control Reserved | Reserved | Sense Length
40 Data Buffer Address (MSQ)

44 Data Buffer Address (LSQ)

48 Status FIFO Address (MSQ)

52 Status FIFO Address (LSQ)

56 Sense Buffer Address (MSQ)

60 Sense Buffer Address (LSQ)

Note: (1) The Transfer Length field contains the fixed length of 4 Bytes of information to be
returned to the initiator as the reaction of the target to the request from the initiator for
the log-in operation.

Note: (2) The SBP Function Code must have the value "000100" binary which indicates this
command block carries the request for an initiator Identifier.

Note: (3) The Queue Type Code is recommended to be value "001" binary as indication of
this command block to be a Head of Queue command.

Note: (4) It is required that the Flags field indicate the present command block to be the
only command block in the present chain and further that this is not a Linked command.

Note: (5) The Next Command Address Field is reserved in this command block.
Note: (6) This command block does not carry a SCSI CDB.
Figure 10. Format Command Block Used for Log-In Request

The table below indicates the specific format of the quadlet of data returned to the Data Buffer address as a
result of successful completion of the log-in operation:
Byte 0 1 2 3

0 | Reserved | initiator Identifier |

Figure 11. Format of Returned Log-In Data

13.2. Request/Release of a Tap Slot

After the initiator has successfully completed a log-in operation with a target, the initiator may request the
target assign it some number of Tap slots. In the alternative, the initiator may wish to release some or all of
the Tap Slots which may have been previously allocated to it. In either situation, initiator must proceed via a
two-step operation as described below.

In step one, the initiator sends a message to the target which advises the target that the initiator has a
command block which contains the details of a request or a release of Tap Slots. The message contains the
address in initiator memory space of this command block. In step two, the initiator supplies the target with
the subject command block when requested to do so by the target. The command block approach is adopted
S0 as to provide a mechanism for:

Working Draft SCSI-3 Serial Bus Protocol 52

10

SBP Control Protocols

Request/Release of a Tap Slot

(@)

(b)

X3T9.2/92-199r9

providing the target with more details concerning the request than are feasible for provision within a

message, and

providing the target with means to give the initiator with more extensive results of the reaction at the

target in relation to the request.

Refer to the Messages section entitled "Request/Release of Tap Slots Message Payload" for details
concerning the message issued by the initiator as step one of the subject protocol.

The table below indicates the specific format of the command block provided by the target as step two of
the subject protocol:

Byte 0 1 2 3
0 Reserved
4 Reserved
8 Reserved LUN
12 Codes Flags
16 Reserved
20 Reserved
24 Reserved
28 Reserved [Number of Tap Slots
32 Transfer Length (08h)
36 Control Reserved | Reserved | Sense Length
40 Data Buffer Address (MSQ)
44 Data Buffer Address (LSQ)
48 Status FIFO Address (MSQ)
52 Status FIFO Address (LSQ)
56 Sense Buffer Address (MSQ)
60 Sense Buffer Address (LSQ)

Note: (1) The value in the Number of Tap Slots field is an unsigned 8-bit number which
indicates the number of Tap slots which the initiator wishes to have allocated to it after
completion of this command. If this is a Request operation, then the Number of Tap
Slots field carries a value which is larger than the present allocation (if any). If this is a
Release operation, then the Number of Tap Slots field carries a value which is smaller
than the present allocation.

Note: (2) The Transfer Length field contains the fixed length of 8 Bytes of information to be
returned to the initiator as the reaction of the target to this command.

Note: (3) The SBP Function Code must have the value "000101" binary which indicates this
command block carries the command for Request or Release of Tap Slots.

Note: (4) The Queue Type Code is recommended to be value "001" binary as indication of
this command block to be a Head of Queue command.

Note: (5) It is required that the Flags field indicate the present command block to be the
only command block in the present chain and further that this is not a Linked command.

Note: (6) The Next Command Address Field is reserved in this command block.
Note: (7) This command block does not carry a SCSI CDB.
Figure 12. Format Command Block Used for Request/Release of Tap Slots

The table below indicates the specific format of the two quadlets of data returned to the Data Buffer address
as a result of successful completion of the Request/Release of Tap Slots command.

Working Draft SCSI-3 Serial Bus Protocol

53

10

15

20

25

SBP Control Protocols X3T9.2/92-199r9
Request/Release of Notification for Asynchronous Events

Byte 0 1 2 3
0 Prior Number of Allocated Tap Slots
4 New Number of Allocated Tap Slots

Figure 13. Format of Returned Data by Request/Release of Tap Slots Command

13.3. Request/Release of Notification for Asynchronous Events

After the initiator has successfully completed a log-in operation with a target, the initiator may make a sign-
in request in which it requests the target to provide it with notification of asynchronous events at the target.
In the alternative, the initiator may wish to gain release from a prior sign-in request. In either situation, the
initiator must proceed via a two-step operation as described below.

In step one, the initiator sends a message to the target which advises the target that the initiator has a
command block which contains the details of a request or a release regarding sign-in for notification of
asynchronous events. The message contains the address in initiator memory space of this command block.
As a special emphasis point, the sign-in for notification applies to one and only one asynchronous event at a
time. When a target sends information concerning a given asynchronous event to those targets which have
"signed-in", the target immediately and automatically takes all initiators out of the sign-in state. Thus, if an
initiator wishes to continue receiving notification of some future asynchronous event, that initiator must
complete another sign-in process. The new, sign-in process functions as if the initiator is undertaking its
very first sign-in operation.

In step two of the sign-in process, the initiator supplies the target with the subject command block when
requested to do so by the target. The command block approach is adopted so as to provide a mechanism for:

(@) providing the target with more details concerning the request than are feasible for provision within a
message, and

(b) providing the target with means to give the initiator more extensive results of the reaction at the target
in relation to the request.

Refer to the Messages section entitled "Request/Release of Notification for Asynchronous Events Message
Payload", for details concerning the message issued by the initiator as step one of the subject protocol.

As a special emphasis point, an initiator may send to the target a second request for notification of
asynchronous events even though a prior request for notification is still valid and in effect. The new
Request is to "overwrite" the previous request in the sense that the new Status FIFO and Sense Data Buffer
addresses replace the previous values for these two quantities. Sense data for this command shall consist of
the two new addresses.

The table below indicates the specific format of the command block provided by the target as step two of
the subject protocol:

Bipe 0 1 Reserved 2 3

20 Reserved

B Reserved Resdrved LUN

22 Codes _Reserved Fldgs AEN Indicator
32 Transfer Length (00h)

36 Control Reserved | Reserved | Sense Length

Working Draft SCSI-3 Serial Bus Protocol 54

SBP Control Protocols X3T9.2/92-199r9
Request/Release of Notification for Asynchronous Events

40 Reserved
44 Reserved
48 Status FIFO Address (MSQ)
52 Status FIFO Address (LSQ)
56 Sense Buffer Address (MSQ)
60 Sense Buffer Address (LSQ)

Note: (1) The AEN Indicator is an unsigned 8-bit number. A positive value (normally value
equal to one), indicates this command block carries a Request to receive notification of
asynchronous events at the target. If this is a Release operation, then this field carries
value equal to zero.

Note: (2) The Transfer Length field contains the fixed length of 0 Bytes of information to be
returned to the initiator as the reaction of the target to this command.

Note: (3) The SBP Function Code must have the value *000110" binary which indicates this
command block carries the command for Request or Release of notification for
asynchronous events.

Note: (4) The Queue Type Code is recommended to be value "001" binary as indication of
this command block to be a Head of Queue command.

Note: (5) It is required that the Flags field indicate the present command block to be the
only command block in the present chain and further that this is not a Linked command.

Note: (6) The Next Command Address Field is reserved in this command block.
Note: (7) The Data Buffer Address Field is reserved in this command block.
Note: (8) This command block does not carry a SCSI CDB.

Figure 14. Format Command Block Used for Request/Release of AEN

Working Draft SCSI-3 Serial Bus Protocol 55

10

15

20

25

30

35

40

X3T9.2/92-199r9

14. Examples

This section details a few typical commands being processed by a single initiator and target. Note, not all
packet acknowledge (acks) are shown in the diagrams to make them more readable and optional split-
transactions should be avoided as much as possible to optimize performance.

14.1. Target Read Command

This example shows a read command to a simple low-cost target which can process a single command at a
time with no queueing in the target. In this example the amount of data requested for transfer from the
target to the initiator is sufficiently small that it can be accommodated in a single data packet. Should a
larger amount of data be involved, then the target would send multiple data packets, such that one packet at
a time is sent at each appropriate IEEE 1394 bus arbitration interval won by that target. The data transfer
process ends when all of the requested data has been sent. The target is responsible for making appropriate
changes in the destination offset address to reflect the progress made in filling the data buffer in initiator
memory.
initiator target
------------- initiator shoulder taps target ------------
Block Write Packet ~ ------ >
Address=Normal FIFO
Data=Address of First Command
<------ Ack (complete, busy_X, or pending)
<--- Block Write Response Packet
(optional if ack=pending)

-------------- target requests command -------------------

<mmmm- Block Read Request Packet
Address=First Command Address

Ack (e.g. pending) ------ >

Block Read Response ~ ------ >

Data=Command Block

M_Flag=0

-------------- target returns data read ------------------
<----- Block Write Packet

Address=Data Address

Data =Requested data

Ack (complete, pending, ------ >
or, busy_X)
Block Write Response --->

(optional if initiator ack=pending)

-------------- target returns status ---------------------
<------ Block Write Packet

Address=Status FIFO

Data=Status Block

Working Draft SCSI-3 Serial Bus Protocol 57

5

10

15

20

25

30

35

Examples

X3T9.2/92-199r9

Target Multiple Read Commands

Figure

Ack (complete, pending, ------ >
or, busy_X)
Block Write Response -->

(optional if initiator ack=pending)

15. Target Read Command

14.2. Target Multiple Read Commands

This example shows two read commands being issued to a target which can internally queue commands.
Note that multiple data packets may be requiredto complete the data transfer for each command.

initiator

target

------------- initiator shoulder taps target ------------

Block Write Packet ~ ------ >

Address=Normal FIFO

Data=Address of First Command
<-mmee- Ack (complete, busy X, or pending)
<- - - - Block Write Response Packet

(optional if ack=pending)

-------------- target requests 1st command ---------------
<----- Block Read Request Packet

Address=First Command Address

Ack (e.g. pending) ------ >

Block Read Response ~ ------ >

Data=Command Block #1, M_FLag=1

-------------- target requests 2nd command ---------------
<----- Block Read Request Packet

Address=Next Command Address

Ack (e.g. pending) - >

Block Read Response ~ —--—-- >

Data=Command Block #2, M_Flag=0

----------- target returns data read for cmd #1 ----------
<------ Block Write Packet

Address=Data Address #1

Data =Requested data

Ack (complete, pending, - >
or, busy X)
Block Write Response -

(optional if initiator ack=pending)
------------ target returns status for cmd #1 -------------
<emme- Block Write Packet

Working Draft SCSI-3 Serial Bus Protocol 58

Examples X3T9.2/92-199r9
Target Multiple Read Commands

Address=Status Address #1
Data=Status Block
Ack (complete, pending, ------ >
or, busy X)
5 Block Write Response -->
(optional if initiator ack=pending)
----------- target returns data read for cmd #2 ----------

<emme- Block Write Packet
Address=Data Address #2
10 Data =Requested data
Ack (complete, pending, = ------ >
or, busy X)
Block Write Response -
(optional if initiator ack=pending)
15 0 eemeeeeeeee- target returns status for cmd #2 -------------
<emme- Block Write Packet

Address=Status Address #2
Data=Status Block

Ack (complete, pending, ---—-- >
20 or, busy_X)
Block Write Response -->

(optional if initiator ack=pending)

Figure 16. Target Multiple Read Commands

Working Draft SCSI-3 Serial Bus Protocol 59

10

15

20

25

30

35

40

X3T9.2/92-199r9

15. Messages

There are a number of operations, such as aborts and resets, which the initiator may wish the target to
perform which are not covered by the standard command protocol. There are management aspects of the
Serial Bus Protocol, such as a log-in request and a request or release of Tap Slot which are either not
addressed or not completely handled by the command protocol. To support these situations, a number of
"message packets" are defined. These would be sent by the initiator to the target Urgent FIFO, in a similar
fashion as the "Tap" is sent to the Normal FIFO when a new command chain is ready. Message Packets are
standard Block Write Request packets. The SCSI message content is conveyed in the 12-Byte payload. The
response to these if a split transaction occurs would be a standard Write Response packet.

The defined message packets are:
ABORT TAG: This aborts a particular tagged command address from this Inititor.

Implementation Note: The intention is that the ABORT TAG message would be used by the initiator
to emulate the Abort function in which it is desired to abort all commands from an initiator
directed to some given LUN. The initiator shall determine which command blocks are to be
aborted and then send to the target an appropriate ABORT TAG message for each of these
command blocks.

RESET: This resets the target.

CLEAR QUE: This aborts all commands in all command chains from all initiators as are directed to a
specific LUN.

Editorial Note: The Editors believe that the CLEAR QUE message is undesirable for inclusion in the
Serial Bus Protocol. The only reason for its present inclusion is for concern in maintaining
compatibility with the SCSI Architectural Model (SAM).

PRIORITY TAP: This acts as a Tap packet for a command block chain which is to receive priority
treatment with regard to fetching of its associated command blocks.

Log-In_Request: This is a special form of Tap packet which informs the target there is the need to fetch a
command block from a given initiator which contains the request for assignment by the target of a short
form (8-bit) initiator Identifier which will be the principal means by which the target manages
subsequent SBP control Protocol requests and selected other requests which may originate from the
initiator.

FF_Control_Request: This is a formal request made by an initiator to write control information into the
First Failure Control register for purpose of releasing the Associated First Failure register from a
locked state in which it might presently been placed by the target.

Request/Release of Tap Slots: This is a special form of Tap packet which informs the target there is the
need to fetch a command block from a given initiator which contains either (a) a request to assign or (b)
a request to release some number of Tap slots maintained at that target and for the exclusive use of that
initiator.

Request/Release of Asynchronous Event Notification: This is a special form of Tap packet which
informs the target there is the need to fetch a command block from a given initiator which contains a
request to "sign-in" for notification of asynchronous events, or (b) a request to release/end a previous
"sign-in" for notification of asynchronous events.

The intent is that a target shall always be able to accept a SCSI Message Packet sent to the Urgent FIFO. A
similar intent exists relative to Status block Packets sent to the to the Status FIFO at the initiator. It is
expected that the frequency of SCSI Messages will be relatively low so that no major difficulty exists at the

Working Draft SCSI-3 Serial Bus Protocol 61

10

15

20

Messages X3T9.2/92-199r9
Abort Tag Payload

target as far as accepting and storing the 12-Byte payload carried by the SCSI Message packet. Nonetheless,
it may occur that a sufficiently large number of SCSI Message packets are sent to the target that a given
SCSI Message Packet must be rejected for a brief interval of time. The target shall take design steps to
ensure that a Message packet is only rejected for a short time period should rejection be necessary.

The reaction of the target when a SCSI Message packet is rejected shall be the same as the reaction of the
initiator when it must reject a Status block. This reaction is to consist of one element. The target sends an
IEEE 1394 acknowledgement code of "Busy X" back to the given initiator. This acknowledgement code
forces the initiator IEEE 1394 hardware to make a retransmission of the given Message packet. The
intention is that the target will be able to accept the SCSI Message packet on this new transmission attempt
by the initiator.

15.1. Abort Tag Payload

The function of this message is identical to the parallel SCSI "Abort Tag" message. There may be a need to
consider the Reserve and Release situations if the Serial Bus Protocol decides to deal with these SCSI

concepts.
Byte 0 1 2 3
0 Command Address (MSQ)
4 Command Address (LSQ)
8 | Type_ ID ABORT Reserved
TAG Code = 12 Hex

Figure 17. Payload of Abort Tag Message

15.2. Target Reset Payload

The function of this message is identical to the parallel SCSI "Bus Device Reset" message.

Byte 0 1 2 3
0 Command Address (MSQ)
4 Command Address (LSQ)
8 Type _ID RESET Reserved
Code = 13 Hex

Figure 18. Payload of Reset Message

15.3. Payload of Clear Queue Packet

The function of this message is identical to the parallel SCSI "Clear Queue" message.

Byte 0 1 2 3
0 Command Address (MSQ)
4 Command Address (LSQ)
8 Type_ID Reserved LUN
CLEAR_QUE Code
= 14 Hex

Figure 19. Payload of Clear Queue Message

15.4. Priority Tap Message Payload

The function of this message is to act as a Tap packet advising the target of the existence of a command
block chain containing one or more command blocks which are to receive fetching on a priority basis by the
target.

Working Draft SCSI-3 Serial Bus Protocol 62

Messages X3T9.2/92-199r9
Log-In_Request Message Payload

Byte 0 1 2 3
0 Command Address (MSQ)
4 Command Address (LSQ)
8 Type_ID Priority Reserved
Tap Code = 50 Hex

Figure 20. Payload of Priority Tap Message

15.5. Log-In_Request Message Payload

The function of this message is to inform the target that an initiator wishes to receive a short form (8-bit)
identifier. The target is to fetch the referenced command block on a priority basis.

Byte 0 1 2 3
0 Command Address (MSQ)
4 Command Address (LSQ)
8 Type_ID Log-In Reserved
Code = 60 Hex

Note: The Command Address is the location in initiator memory address space of the
command block which carries the details of the log-in request.

Figure 21. Payload of Log-In_Request Message

15.6. FF_Control_Request Message Payload

5 The function of this message is to request a write operation be performed by the target to the First Failure
Control register which may be implemented at that target. The reason for the write operation is to secure an
"unlock™ of the associated First Failure register possibly located at that target. If the unlock operation is
successful, then the target is able to record new error information into the unlocked First Failure register.

Byte 0 1 2 3
0 Command Address (MSQ)
4 Command Address (LSQ)
8 | Type_ID FF_Write | Unlock Value Code Reserved
Code = 61 Hex = FC Hex

Figure 22. Payload of FF_Control_Request Message

15.7. Request/Release of Tap Slots Message Payload

10 The function of this message is to inform the target of the location in initiator memory address space of a
command block which carries either:

(@) arequest for allocation of Tap Slots, or
(b) arelease of some number of Tap Slots previously allocated to that initiator.

The command block shall provide the target with statement if this a request or a release; and, information as
15 to where results, status, and sense data (if needed) are to be sent the initiator.

Working Draft SCSI-3 Serial Bus Protocol 63

Messages X3T9.2/92-199r9
Request/Release of Asynchronous Notification Message Payload

Byte 0 1 2 3
0 Command Address (MSQ)
4 Command Address (LSQ)
8 | Type_ID Tap_Slot Reserved
Code = 70 Hex

Note: The Command Address is the location in initiator memory address space of the
command block which carries the details of the Tap Slot request.

Figure 23. Payload of Request/Release Tap Slots Message

15.8. Request/Release of Asynchronous Notification Message Payload

The function of this message is to inform the target of the location in initiator memory address space of a
command block which carries either:

(@) arequest for allocation to sign-in for purposes of receiving notification of asynchronous natification
at that target, or

(b) arelease/end of a previous sign-in granted to that initiator.

The command block shall provide the target with statement if this a request or a release/end; and,
information as to where results, status, and sense data (if needed) are to be sent the initiator.

Byte 0 1 2 3
0 Command Address (MSQ)
4 Command Address (LSQ)
8 Type_ID AEN Reserved
Notice Code = 71
Hex

Note: The Command Address is the location in initiator memory address space of the
command block which carries the details of the sign-in request or release.

Figure 24. Payload of Request/Release of Asynchronous Notification Message

Working Draft SCSI-3 Serial Bus Protocol 64

10

15

20

25

X3T9.2/92-199r9

16. Compatibility to Parallel SCSI

It has been the intention in drawing up this document to maintain as close a compatibility with parallel
SCSI, as defined by the SCSI-2 specification as possible. There are the obvious changes in delivery of
packets as described above but other than that it is the intention that any SCSI CDB could be delivered and
any data could be sent and received with higher level microcode without the target and the initiator being
aware of the change from a parallel interface to the serial.

Listed below are a number of additions that are required to the SCSI standard to support the serial interface.
The rule that has been followed in drawing up this list is ALL EXISTING SCSI COMMANDS MUST
WORK AS TODAY.

16.1. Relation of a Target to Multiple Initiators

In parallel SCSI various parameters are stored on a per initiator basis. For example check conditions and
certain read and write parameters.On IEEE 1394 it is possible that a target may have to deal, at various
times, with 65534 initiators. It clearly becomes impractical to store any parameters on a per initiator basis.

This affects the following

Power on Reset: After a power on or reset each target usually holds a check condition for each initiator. In
this model it is considered a job of the IEEE 1394 management layer to notify initiators about reconfig-
urations in the network and hence this function is delegated to this layer. After a power on or reset a
target will accept and action the first command received.

Microcode code changed/media changes/parameters changed by another initiator: There is no
inherent check condition generated for each initiator under this model. If an initiator wishes to be
notified of such an event then it may sign-in to receive a callback from the target to be notified of this
or any other asynchronous event.

Per initiator mode sense/select pages: These are no longer supported. All parameters are now global
across all initiators. In a multi initiator system it is expected that the initiators can agree on a common
set of parameters.

Working Draft SCSI-3 Serial Bus Protocol 65

10

15

20

25

30

X3T9.2/92-199r9

Appendix A. Packet Formats

For purposes of convenient reference, the section describes the packet formats specified in the IEEE 1394
standard and utilized in support of the SCSI 3 Serial Bus Protocol. Ownership of these packet is
acknowledged as being with the stated IEEE committee. No effort shall be made in this SCSI 3 Serial Bus
Protocol document to alter these formats.

16.2. Write Packets

+ + S Y S +-+
| Destination ID | TI |Rt| TCode |Res |P|
+ + S Y S +-+
| Source ID | Destination Offset
+ + +
| Destination Offset |
+ + + + +
| ByteO | Bytel | Byte2 | Byte3
+ + + + +
| Header CRC |
+ +

m-mmmmmmememneeees m-mmmmmmememneees Figure 25. Quadlet Write Request
Packet

NOTE: Bytes 0,1,2,3 are the subject quadlet of data.

+ +
S S — +-+
| Destination ID | TI |Rt| TCode |Res |P|
+ + ot S +-+

| Source ID | Destination Offset

+ + +
| Destination Offset |

+ + +

Working Draft SCSI-3 Serial Bus Protocol 67

Appendix A. Packet Formats X3T9.2/92-199r9
Write Packets

| Block Length Tr Data 0000
+ + +
| Header CRC |
+ +
5 | Block of Data |
+ +
| Data CRC |
+ +

10 Packet
+ + +--—+ + +-+
| Destination 1D | Tl |Rt| TCode |Res |P|
+ + S S S S — +-+
15 | Source ID | RCode | Reserved
+ + + +
| Reserved |
+ +
| Header CRC |
20 + +

A.2 READ PACKETS

25 + + +---+ ot
| Destination ID | TI |Rt] TCode |Res |P|
+ + +--—t R
| Source ID | Destination Offset
+ + +
30 | Destination Offset |
+ +
| Header CRC
+ +

Working Draft SCSI-3 Serial Bus Protocol 68

10

15

20

25

30

Appendix A. Packet Formats
Write Packets

X3T9.2/92-199r9

------------------------ ----Figure 28. Read Quadlet Request

Packet
+ +
S — S — +-+
| Destination ID | TI |Rt| TCode |Res |P|
+ + S S S S — +-+
| Source ID | RCode | Reserved
+ + + +
| Reserved
+ + + + +
| ByteO | Bytel | Byte2 | Byte3
+ + + + +
| Header CRC
+ +
memememmmmmeeeene- memememmmmeeeeeee- Figure 29. Quadlet Read Response
Packet

NOTE: Bytes 0,1,2,3 are the subject quadlet of data.

+ + R O S —— +-+
| Destination ID | Tl [Rt| TCode | Res |P| +-------===-=mnmmmmmmmooooeeee +o-moe-
+---+ o+

| Source ID | Destination Offset

+ + +
| Destination Offset

+ +
| Data Length

+ +
| Header CRC

+ +

Packet

Working Draft SCSI-3 Serial Bus Protocol

Figure 30. Block Read Request

69

10

15

20

25

30

Appendix A. Packet Formats X3T9.2/92-199r9
Write Packets

+ +

R — S — +-+
| Destination 1D | TI |Rt] TCode | ResS |P| +--------=--m-mmmmmmmmmmmmm e +-oee-
T
| Source ID | RCode | Reserved

+ + S +
| Reserved |

+ + +
| Data Length | Tr Data |

+ + +
| Header CRC |

+ +
| Block of Data |

+ +
| Data CRC |

+ +

--- Figure 31. Block Read Response

DESTINATION ID
This is the bus and node ID of the unit receiving the packet.

DESTINATION OFFSET
This is the address within the receiving node at which the data should be read
from or stored into.

SOURCE ID This is the bus and node ID of the unit sending the packet.

TL This field carries the transaction label.

RT This field carries the retry code.
RCODE This field carries the response code. This code defines the type of
response being returned (e.g. normal, abnormal, bad CRC, etc.)

TCODE This field carries the transaction code. This code defines the type
of packet (e.g. Quadlet Write Request, Block Read Response, etc.)

R This bit field is reserved.

P This bit field is used as a priority indicator.

DATA LENGTH

Working Draft SCSI-3 Serial Bus Protocol 70

10

Appendix A. Packet Formats X3T9.2/92-199r9
Write Packets

This is the length of valid data that follows the header CRC field.

TR DATA (RESERVED)
A reserved field - all zeros.

HEADER CRC
The CRC code for the header information only.

DATA This field, of variable size holds the data to be transported. For
a quadlet operation it is 4 bytes wide. For a block operation it is n*4 bytes in size.
The Data Length field indicates the exact number of bytes of valid data in this
field.

DATA CRC This CRC field protects the data within a block operation.

Working Draft SCSI-3 Serial Bus Protocol 71

10

15

20

25

30

X3T9.2/92-199r9

APPENDIX B. ISOCHRONOUS
TRANSFER

Note well, it is anticipated that Apple Computer (and other parties) intend to make additional and
substantial input to the description of the Isochronous data transfer process. Thus, the material
below is presented as a "place holder" subject to the understanding that it is subject to significant
change.

When the Isochronous Command Operations Code (bits 15 to 13 in the Flags field of the
command block) indicates the command block to be carrying an Iscochronous command, then
the detailed format of the command block is specified as per Appendix C following. This
appendix describes the format of data packets supporting Isochronous data transfer.

All Isochronous data transfers, either read or write, use a common packet type.

+ + + ot t
| Data Length | Channel |TCode |Sy|RS| +--=-=======mmmmmmmemmmmmmmeae +eeeee
+ +ot—+
| Header CRC | emmmmmm e e
_______________ +
| Isochronous Data | +==mmmmmmeeeeees -
_________________ +
| Isochronous CRC | +-=--- memememememmmeeeeeeeeeeeeeee-
__________________ +

-- Figure 32. Isochronous

Each target will support a number of Isochronous channels simultaneously, varying
from 0 to N. Proper and appropriate management of the Isochronous transfer facilities
ensures there will be a resource available to handle the Isochronous packet.

B.1 READ FROM MEDIA - ISOCHRONOUS

This is the case where the target device is generating data and transmitting it to a remote
device. Under these circumstances the target is responsible for scheduling the data reads

Working Draft SCSI-3 Serial Bus Protocol 73

X3T9.2/92-199r9
Write Packets

from the media and sending the data in the appropriate channel. For this type of transfer
all the normal error checks performed for an asynchronous read must be carried out but
in addition a check must be made for any underrun conditions, i.e. if the target device

fails to supply data in the appropriate time slot.

B.2 WRITE TO MEDIA - ISOCHRONOUS

In this case the data will be transmitted to the target by another device.

The target has no means to pace the data and must accept every Isochronous packet received

on its channel.

Working Draft SCSI-3 Serial Bus Protocol 74

10

15

20

25

X3T9.2/92-199r9

APPENDIX C. ISOCHRONOUS COMMAND FORMATS

Please note that the primary point of contact for the material contained in this appendix is:

Scott Smyers

Apple Computer

3535 Monroe Street, MS 69G

Santa Clara, California 95051

Voice: (408) 974-7057

FAX: (408) 974-2898

email: smyers.s@applelink.apple.com

C.1 SCOPE

This appendix defines the format of Isochronous commands and Isochronous control registers for
the Serial Bus Protocol. An initiator uses these commands to control a device which is sourcing
or sinking an Isochronous stream of data through use of the Isochrononos data transfer facility of
the IEEE 1394 High Speed Serial Bus.

The following standards documents contain additional information which is useful for
understanding the subject environment:

IEEE P1394 Standards Document

SCSI-3 Serial Bus Protocol

C.2 DEFINITIONS

Below are definitions of some terms which are used freely throughout this appendix:

ISOCHRONOUS DATA STREAM

Working Draft SCSI-3 Serial Bus Protocol 75

10

15

20

25

30

X3T9.2/92-199r9
Write Packets

Data which is carried in Isochronous data packets which all have
the same Isochronous channel number, occur on consecutive
Isochronous cycles and have a length of zero or more bytes.

LISTENER An IEEE P1394 target which is receiving, or sinking, one
or more Isochronous data streams.

TALKER An IEEE P1394 target which is transmitting, or sourcing,
one or more Isochronous data streams.

ISOCHRONOUS CONTROL REGISTER (ICR)

A register which must be implemented in a target capable of
Isochronous data transfer. This register controls the starting and
stopping of Isochronous data to or from the target.

C.3 OPEN ISSUES

The information presented in this appendix is not yet complete. There remain significant open
issues. While the behavior that is intended for Isochronous disk drives is mostly understood, the
details necessary to coax that behavior out of the commands and registers defined here has not
been completely resolved. This section discusses the identified open issues. Work continues
regarding resolution of these topics. The editors encourage those readers with opinions to come
forward and offer any constructive input they may have.

One open issue has to do with the type of data that is envisioned to be carried Isochronously.
Specifically, the Isochronous data transport mechanism is intended to transport Isochronous
"objects" continuously from a single talker to one or more listeners. An Isochronous object is a
fixed size, and it may be one sample from each channel of a stereo sound source, or one frame of
a video, plus associated digitized sound.

Only rarely and by complete coincidence will an Isochronous object fall on a logical block
boundary of a disk drive. However, it is extremely important, if not essential, that a controlling
initiator be able to force a disk drive to source an Isochronous stream data beginning at an object
boundary. In order to do this, the Port_ Append command must have addressing granularity of
one Byte. The Port_Append command uses a SCSI CDB to address media data, and a SCSI
CDB can not address media data on a Byte boundary. In addition, the Isochronous Control
Register described below will need to pause on a Byte boundary. While this capability is present
in the control register, there remains some details to be worked out.

C.4 OVERVIEW

Working Draft SCSI-3 Serial Bus Protocol 76

10

15

20

25

30

X3T9.2/92-199r9
Write Packets

This section contains a brief overview of Isochronous data transfer and describes the control flow
that the initiator and target participate in during the Isochronous setup, data transfer and teardown
operations. Note there is a more complete overview in Appendix D, entitled "Isochronous
Streams for the IEEE Serial Bus devices".

| The figure below illustrates the situation of a single initiator and a

single

| target which is a disk drive. The figure depicts two different kinds
of flow

| between the given initiator and the given target. One of these
flows is the

| control flow which is shown in high-level form,and in an explicit
fashion.

| The other flow is the flow of Isochronous data which is shown

only in concep-

| tual form in the right-hand margin of the figure. No attempt is
made in the

| conceptual flow to show any of the Isochronous packets involved.
For sim-

| plicity reasons, the flow of Isochronous data is shown
conceptually as a time

| period during which prerequisite control information has been

established at

| the target by means of a appropriate write operation to the Isochronous
| Control Register located at that target.

| Emphasis in the diagram is upon the control flow. The Isochronous Port_Setup | command
supplies the target with certain needed configuration type informa| tion. At the end of the flow, the
Isochronous Port_TearDown command deini| tializes the given port. During the main part of the
flow, the initiator

| uses the Port_Append command to maintain an Isochronous stream of data to or | from

discontiguous areas of target address space. Each Port_Append command | describes a contiguous

Working Draft SCSI-3 Serial Bus Protocol 77

X3T9.2/92-199r9
Write Packets

area of the device media. The Port_Append command | does not instruct the target to begin or halt

transferring Isochronous data. | This function is provided by the Isochronous Control Register

(ICR) which is | described in a following section.

5 initiator
target
(A) Tap --- Send Tap Packet -—->
<--- Request a Command
Port_Setup --- Supply the Command --->
10 Isochron
ous Port
Establis
hed
<--- Request a Command
15 Port_Append --- Supply the Command --->
(B) Start --- Write to ICR Register ---> falalalolaloialaiakaialaiolalolalel
|
<--- Request a Command |
| Port_Ar
20
Data Transfer <--- Request a Command---
In Progress
| Port_Ar

Working Draft SCSI-3 Serial Bus Protocol 78

X3T9.2/92-199r9

Write Packets

(C) Pause --- Writeto ICR Register —_> F*hkkhhkkrhkrkrhkrkrhkirk
(D) Start --- Writeto ICR Register —_ e
5
(E) StOp --- Writeto ICR Register — Khhhhkrhkhhhhhrrhhk
(F) Tap --- Send Tap Packet >
<--- Request a Command
Port_TearDown --- Supply the Command --->
10 Isochronous Port

Discarded

------------------------ Figure 33. Isochronous Control and

Data Flow

15 The letters in the figure correlate with the text below:

(A)

20

25 sourcing or

The initiator taps the target to inform it that there are some com-

mands available for it to fetch. In response, the target requests the first command,
which is a Port_Setup command. The target configures the selected port to transfer data
according to the parameters contained in the Port_Setup command. The Port_Setup
command exists in a chain with three Port_ Append Commands. In anticipation of

transferring

Isochronous data, the target requests the next command in the chain, which happens to
be a Port_Append command.

(B) At this step, the initiator tells the target to start

sinking Isochronous data. It does so by writing to the Isochronous Control Register.
In response, the target begins transferring Isochronous data. As it proceeds, the target
fetches additional Port_Append commands, as needed to maintain the stream of
Isochronous data.

Working Draft SCSI-3 Serial Bus Protocol 79

10

15

20

25

30

Write Packets

remainder

X3T9.2/92-199r9

© The target, after transmitting
Isochronous data for a while, continues
fetching Port_Append commands as needed. Then, the initiator issues a Pause request.
It does this by writing to the Isochronous Control Register. The target responds by
pausing the transfer of Isochronous data.

(D) The initiator again issues a Start
request to the target. The target
then resumes transferring Isochronous data. In the situation illustrated, the given
Isochronous data comes from the same area of media at the target as was the case data
transfer prior to the pause. Again, in the situation illustrated, the given area of target
media contains all the data needed for the duration of the Isochronous transfer. Con-
sequently, no additional requests for a Port_ Append command are needed.

(E) The initiator issues a Stop request to
the target by writing a value
to the Isochronous Control Register. The target responds by halting all transfer of
Isochronous data on the designated port.

(F) The initiator sends a Tap packet to
the target indicating that a
command is available. The target fetches the command, discovers that it is a
Port_TearDown and responds by de-initializing the designated port.

The above discussion covers the entire "life" of an Isochronous port. The
of this appendix describes the three Isochronous commands (Port_Setup, Port_Append

and Port_TearDown) and the Isochronous Control Register.

C.5 OBJECTS AND OBJECT BOUNDARIES

When a node is configured to send or receive Isochronous data, it is given an
object size. The object size defines a periodicity to the Isochronous data.
For example, consider a talker configured to send 4 bytes per Isochronous
cycle with an object size of 6 bytes. Periodically, the boundary of a 6 byte
object will fall on an Isochronous cycle boundary, as depicted in the figure
below:

Figure 34. Isochronous Boundaries Example

Working Draft SCSI-3 Serial Bus Protocol 80

15

20

30

X3T9.2/92-199r9
Write Packets

Cycle N begins on an object boundary, cycle N+1 begins at some offset within
an object and cycle N+2 happens to end on an object boundary. Not shown in
this figure is cycle number N+3, which begins on an object boundary.

The Isochronous talker marks each Isochronous cycle which begins on an object
boundary by setting a bit in the header of the Isochronous data packet trans-
mitted on that Isochronous cycle. In the example above, cycles N and N+3
would be so marked, because those cycles begin on object boundaries.

The object which begins on an Isochronous cycle boundary and which is flagged
with a bit in the Isochronous header is called a marked object. The

Isochronous listener uses marked objects to resynchronize in the event that

data was missed, either due to a faulty transmission or an internal error in

the listener or talker. Both the Isochronous talker and listener use their
awareness of object boundaries, marked or not, to pause Isochronous data
transmission on object boundaries.

C.6 ISOCHRONOUS COMMANDS

This section defines all Isochronous commands. An initiator supplies these commands to a
target per the request of the target in conformity to the Serial Bus Protocol for command
delivery.

| EDITORIAL NOTE: No reasons have been identified which prevent Isochronous
| command blocks from being mixed in the same chain with asynchronous
command blocks. The two types of command block are in the same general
format. The value of the SBP Function Code provides means to distin-
guish the Isochronous command block from the general asynchronous
command block.

Isochronous commands reserve resources in the target and steer Isochronous data to or from the
target's address space. The one Isochronous command which transfers data carries a SCSI CDB
which addresses media data. For Isochronous commands which do not result in data transfer,the
command block does not carry a SCSI CDB.

The following table shows the general format of an Isochronous command. An Isochronous
command is identified by selected values within the SBP Function Code field.

Working Draft SCSI-3 Serial Bus Protocol 81

X3T9.2/92-199r9
Write Packets

ot +
| BYTE| FUNCTION
+ + R —— +
| | O | Codes | Flags
5 + + o +
| | 4 | Reserved | LUN
+ + R —— +
| | 8 | Next Command Address (MSQ)
ot +
10 | | 12| Next Command Address (LSQ)
ot +
| | 16 | CDB or Isochronous Parms (as needed)
ot +
| | 20| CDB or Isochronous Parms (as needed)
15 ot +
| | 24| CDB or Isochronous Parms (as needed)
ot +
| | 28| CDB or Isochronous Parms (as needed)
+ + + + +
20 | | 32| Control Reserved | Reserved |Sense Length |
+ + + + +
| | 36| Transfer Length
ot +
| | 40 | Control/Port_ID
25 ot +
| | 44 | Reserved
ot +
| | 48 | Status FIFO Address (MSQ)
ot +
30 | | 52| Status FIFO Address (LSQ)
ot +
| | 56 | Sense Data Buffer Address (MSQ)
ot +
| | 60 | Sense Data Buffer Address (LSQ)
35 ot +

| Figure 35. General Format of Command Block for Isochronous Commands
C.6.1 PORT_SETUP COMMAND

The Port_Setup command reserves resources in the target in anticipation of transferring data
40 Isochronously. The Port_Setup command establishes an association between these reserved

Working Draft SCSI-3 Serial Bus Protocol 82

X3T9.2/92-199r9
Write Packets

resources and the 16 bit port identifier contained in the Port_ID field. The Port_Setup command
creates a port and the Port_TearDown command destroys a port.

The table below defines the format of this command.

5 ot +
| BYTE| FUNCTION
ot + +
| | O | Codes | Flags
ot + +
10 | | 4 | Reserved | LUN
ot + +
| | 8 | Next Command Address (MSQ)
ot +
| | 12| Next Command address (LSQ)
15 ot +
| | 16 | Numerator/Denominator
ot +
| | 20| Integer Count
ot +
20 | | 24| Object Size
ot +
| | 28| Reserved
+ + + + +
| | 32| Control Reserved | Reserved |Sense Length |
25 + + + + +
| | 36 | Reserved
+ + + + +
| | 40| Isochronous Control | Reserved | Port_ID
+ + + + +
30 | | 44 | Reserved
ot +
| | 48 | Status FIFO Address (MSQ)
ot +
| | 52 | Status FIFO Address (LSQ)
35 ot +
| | 56 | Sense Data Buffer Address (MSQ)
ot +
| | 60 | Sense Data Buffer Address (LSQ)
ot +

Working Draft SCSI-3 Serial Bus Protocol 83

X3T9.2/92-199r9
Write Packets

| Figure 36. Command Block Format for the Isochronous Port_Setup Command

The following description of terms is given only for those items items which
are unique to the given Isochronous command.
5 All other items are the same as previously described for the command block
associated with an asynchronous command.

FIELD FUNCTION

NUMERATOR/DENOMINATOR

|
+ + e +
15 | BIT(S) |[NAME |FUNCTION
+ + e +
| | 31 (MS) | Denomi- | These 16-bits are the Denominator term (D) in
the |
| | to16 |nator | alogrithm described in the following section,
20 | | | | entitled "Discussion of Isochronous Data
Transfer |
| | | | Algorithm".
+ + e +
| | 15to 0 | Numerator | These 16-bits are the Numerator term (N) in the
25 | | (LS) | | alogrithm described in the following section,
| | | | entitled "Discussion of
+ + e +
| Figure 37. Numerator/Denominator Field in the Isochronous Port Setup
30 Command
| INTEGER COUNT
| The 32-bit Integer Count field along with the the
| Numerator/Denominator field define the rate at which the target is
| to transmit or receive Isochronous data on this port.
35 | OBJECT SIZE

Working Draft SCSI-3 Serial Bus Protocol 84

The
defir
Isoct

form

10

15

20

25

30

35

X3T9.2/92-199r9
Write Packets

The 32-bit Object Size field contains the size, in bytes, of the
objects that the talker is to transfer Isochronously. The talker
uses this size to stop on an object boundary and to set the marked
object bit in the Isochronous header. The listener uses the object
size to maintain synchronization with the talker and to stop on
object boundaries.

ISOCHRONOUS CONTROL

This 16-bit field contains bits which establish the speed, direction and error
handling modes for this port. The Isochronous Control field currently has the
following bits defined. All bits not specified are reserved.

oo e Fommmmm e +| BIT(S) | NAME
R e B +| 15 (MS) | Talker/
| | Listener | source(talk) or sink(listen) Isochronous data. |

| | | Value 0 means the target is a listener. Value |

| | | 1 means the target is a talker.

e Fommmee - et LR R PR +| 14

| | | nition by this standard. The initiator shall

| | | always set this bit to zero and the target

| | | shall ignore the setting of this bit.

Fommmmmee Fommmmmmmee- o +| 13to 12 | Port Speed | This
field determines the bus speed at which |

| the Isochronous data is to be transmitted

| according to the following:

Value 00 means 100 Megabits per second.
Value 01 means 200 Megabits per second.
Value 10 means 400 Megabits per second.
Value 11 is reserved.

NOTE: This is the signalling rate at which the |

target is to transmit Isochronous
packets on this port. The aggregate rate |

Working Draft SCSI-3 Serial Bus Protocol 85

10

15

20

25

30

35

X3T9.2/92-199r9
Write Packets

of data transfer in terms of sustained
number of Bytes per unit time is con-
trolled with other parameters in the
Port_Setup command.
Fommmmoee- Fommmmmmeeeee o e +| 11to 10 | Error
Reporting | strategy for Isochronous data transfer on this |

| port. These error reporting strategies are

| defined elsewhere in this appendix.

Value 00 means stop on any error.
Value 01 means log error and continue.

Value 10 means ignore all errors.

Value 11 is reserved.

+ + S +
9to 8| Continue | Under the condition that the target is pro-

| Mode | grammed to not stop on any error, this field

| | determines how missing cycles of Isochronous
| data are to be treated.

+ + TR P e PR R R +
| 7to0 |Reserved | These bits are reserved.

| (LS) | |

+ + TR P e PR R R +

Working Draft SCSI-3 Serial Bus Protocol 86

10

15

20

25

X3T9.2/92-199r9
Write Packets

Figure 38. Port_Setup Isochronous Control Field
RESERVED This 8-bit field is reserved.

PORT_ID This field contains the identifier for the Isochronous port
that

the target is to create as a result of executing this command. Following the

successful completion of the Port_Setup command, all commands having the

same value in the Port_ID field affect this port. This port exists until the

successful completion of a Port_TearDown command having the same value in

the Port_ID field.

| C.6.1.1 Discussion of Isochronous Data Transfer Algorithm

| An Isochronous talker transmits Isochronous packets at a rate of 8,000

| packets per second for a single channel. Each of these packets carries an

| integer number of Bytes. In order to manufacture isochronous rates which are
| not multiples of 8,000 bytes per second, a talker must send Isochronous

| packets of more than one size.

| The parameters above describe to the Isochronous talker the rate (R) which is
| desired in units of bytes per Isochronous cycle. This rate is calculated from

| the parameters in the above fields according to the following equation:

| R (Bytes per Isochronous cycle) = 1 + N/D

| Where I, N and D are all non-negative integers and N is less than D. If N is
| zero, D isignored. The number of Bytes per second that this translates into
| is calculated by multiplying R by 8,000.

| Asanexample, let's assume that an Isochronous talker is being configured to
| carry 1 channel of digital audio Isochronously. Assume that this channel

| requires 1 Byte at 44.1 KHz. The necessary Isochronous rate, then, is:

Working Draft SCSI-3 Serial Bus Protocol 87

X3T9.2/92-199r9
Write Packets

(44,100 samples/sec) * (1 Bytes/sample) = 44,100 Bytes/second

| which is described as:

(5 + 41/80) Bytes per Isochronous cycle
The Isochronous talker would fabricate this rate by sending Isochronous
packets of length 5 Bytes alternating with Isochronous packets of length 6
bytes. Every 80 Isochronous cycles, the talker would transmit an extra
Isochronous packet of length 6 bytes. With this algorithm, the number of
Bytes transmitted over the course of 80 Isochronous cycles is exactly what is
required to carry the data. A listener to this stream of data would not have
to buffer more than two Bytes of data at any given time.

10

C.6.2 PORT_TEARDOWN COMMAND

The Port_TearDown command instructs the target to destroy a port and release all resources in
the target which were reserved for that port. The port must first have been created with the
Port_Setup command described previously.

15 The table below defines the format of this command.

ot +
| BYTE]| FUNCTION
+ + e +
20 | | O | Codes | Flags
+ + e EE R +
| | 4 | Reserved | LUN
+ + e EE R +
| | 8 | Next Command Address (MSQ)
25 ot +
| | 12| Next Command address (LSQ)

Working Draft SCSI-3 Serial Bus Protocol 88

30

35

X3T9.2/92-199r9
Write Packets

ot +
| 16| Reserved
ot +
| 20| Reserved
ot +
| 24| Reserved
ot +
| 28] Reserved
+ + + + +
| 32| Control Reserved | Reserved |Sense Length |
+ + + + +
| 36 | Reserved
+ + + + +
| 40 | Reserved | Reserved | Port_ID
+ + + + +
| 44| Reserved
ot +
| 48 | Status FIFO Address (MSQ) |
ot +
| 52 | Status FIFO Address (LSQ) |
ot +
| 56 | Sense Data Buffer Address (MSQ)
ot +
| 60 | Sense Data Buffer Address (LSQ)
ot +

Figure 39. Command Block Format for the Isochronous Port_TearDown Command

The following description of terms is given only for those items items which are unique to the
given lIsochronous command. All other items are the same as previously described for the
command block associated with an asynchronous command.

FIELD FUNCTION

PORT_ID This 8-bit quantity is the identifier of the Isochronous port that the target is to destroy
as a result of executing this command. In order to successfully execute the
Port_TearDown command, the port with the same Port_ID must first have been

created using the previously described Port_Setup command.

C.6.3 PORT_APPEND COMMAND

Working Draft SCSI-3 Serial Bus Protocol 89

X3T9.2/92-199r9
Write Packets

The Port_Append command provides the target with SCSI CDB's which the target uses to steer
the Isochronous data to or from locations on the media. The initiator uses the Port_Append
command to maintain an Isochronous stream of data to or from discontiguous areas of target
address space. Each Port_Append command describes a contiguous area of the device media.

The following table lists the information which this command carries from a
controlling initiator to a target.

ot +
| BYTE| FUNCTION

+ + S +
| O | Codes | Flags

+ + SRS +
| 4 | Reserved | LUN

+ + SRS +
| 8 | Next Command Address (MSQ)

ot +
| 12| Next Command address (LSQ)

ot +
| 16 | CDB Bytes 0 to 3

ot +
| 20| CDB Bytes4to 7

ot +
| 24| CDB Bytes 8 to 11

ot +
| 28| CDB Bytes 12 to 15

+ + + + +
| 32| Control Reserved | Reserved |Sense Length |

+ + + + +
| 36 | Transfer Length

+ + + + +
| 40 | Reserved | Reserved | Port_ID

+ + + + +
| 44 | Reserved

ot +
| 48 | Status FIFO Address (MSQ)

ot +
| 52 | Status FIFO Address (LSQ)

ot +
| 56 | Sense Data Buffer Address (MSQ)

ot +

Working Draft SCSI-3 Serial Bus Protocol 90

10

15

20

25

30

X3T9.2/92-199r9
Write Packets

| 60 | Sense Data Buffer Address (LSQ)
ot +

Figure 40. Command Block Format for the Isochronous Port_ Append Command

The following description of terms is given only for those items items which are either unique to
the given Isochronous command, or require special dis-

cussion in the context of the given Isochronous command. All other items are the same as
previously described for the command block associated with an asynchronous command.

FIELD FUNCTION

CDB (SCSI COMMAND DESCRIPTOR BLOCK)
These four quadlets contain a SCSI read or write CDB which carries the starting
Logical Block Address and the Logical Block Count for this command.

NOTE: When the target has transferred this data Isochronously (either sourced it
or sinked it), there must be an additional Port_Append Isochronous
command available to the target for this same Port_ID in order for the
target to avoid gaps in the data.

TRANSFER LENGTH

The 32-bit Transfer Length field contains the number of bytes that will be
transferred as a result of executing this command. Note that this is the same
definition that this field has for normal asynchronous commands.

RESERVED QUADLET
The quadlet is reserved.

RESERVED DOUBLET
The doublet is reserved.

PORT_ID This 8-bit quantity is the identifier of the Isochronous port that
the target is to use for data transfer when executing this command.

NOTE: This port must have already been created with a Port_Setup command
and data transfer must have already be started via the Isochronous
Control Register (ICR) before a Port_ Append command can be
executed.

C.7 ISOCHRONOUS CONTROL REGISTER

Working Draft SCSI-3 Serial Bus Protocol 91

10

15

20

25

Write Packets

X3T9.2/92-199r9

The Isochronous Control Register (ICR) is an 8 byte register contained in the

target's CSR address space. The ICR is a read/write register that shall
only be accessed using an 8 byte IEEE P1394 read or write bus
transaction. Note that these bus transactions are indivisible with
respect to all other nodes on the same IEEE 1394 High Speed Serial
Bus.

All targets supporting Isochronous data transfer must implement the ICR. The

address of the ICR is contained in the target's ROM data structure.

The ICR controls the flow of Isochronous data that the target sources or sinks. A

single write to the ICR causes the target to begin or halt the sourcing or
sinking of Isochronous data, according to the Port_Setup and one or
more Port_Append commands which must have already been delivered
to the target. The value written to the ICR determines the requested
action (start,

stop, or pause). The requested action can be effective immediately, or on a particular cycle
number or other stream event.

When the target is a talker and is told to pause, the target waits for the programmed event, then
transmits zero length Isochronous data packets. When the target is a listener, a pause instructs
the target to temporarily stop recording a stream of Isochronous data.

The start function tells the target to either begin or continue talking or listening at the place
where it was paused. Neither the start nor the pause functions affects the state of the stream of
data. Upon resuming, the target continues where it left off.

The figure below shows the layout of the ICR:

Fommememeee L Fommmmmmnnes +| BIT(S) | NAME
Fommmmmmeen Fommmmmmmmeeeee oo +| 63 (MS) | Action
| to60 | which informs the target the action that it |

Working Draft SCSI-3 Serial Bus Protocol 92

10

15

20

25

30

35

Write Packets

Working Draft SCSI-3 Serial Bus Protocol

X3T9.2/92-199r9

| is to perform, according to the following: |

|
| VALUE ACTION DEFINITION

|

| 0 Stop sourcing/sinking Isochronous |
| data and enter the stopped state. |

| If the target is sourcing data,

| then the target sends an end of

| stream packet on the Isochronous
cycle on which this action takes |
affect. The target does not send |
out zero length Isochronous
packets while in the stopped

state.

1 Pause sourcing/sinking
Isochronous data and enter the
paused state. If the target is
sourcing data, then the target is |
to continuously send zero length |
Isochronous packets while in the |
paused state.

2 Start sourcing/sinking
Isochronous data on the Port_ID
using the Isochronous channel
number contained in the Channel
Number field.

3TO 15 Reserved

--------- +| 59 to 58 | Stream Event
| the requested action is to take place on a |

| certain event, according to the following

| encoding:

93

10

15

20

25

30

35

40

X3T9.2/92-199r9
Write Packets

| |

| | VALUE STREAM EVENT DEFINITION

| |

| |0 As soon as possible, i.e., imme- |

| | diately.

| |

| |1 Perform the requested action on a

specific Isochronous cycle
number. The Cycle Number field
contains the number of the
Isochronous cycle on which the
action is to take affect.

either a start of stream packet
(for the start action) or an end |
of stream packet (for the stop or |

|

|

|

|

|

|

| 2 Perform the action on receipt of |
|

|

|

| pause actions).
|

|

3 Reserved
Fommemeeeee B Fomme e eee +| 57 to 56 | Reserved
Fommemeeeee B Fomme e eee +| 5510 40 | Byte_Offset

| | | and pause actions. This field contains the |

| | | number of Bytes that the target is to

| | | source or sink on the Isochronous cycle on |

| | | which the stop or pause actions take

| | | affect.

Fommmmoee- Fommmmmmme e oo eeee +| 39t0 32| Port_ID

| | | port that the target is to perform the

| | | requested action on.

Fommmmmeeee Fommmmmmme e oo eeee +| 31to 12 | Cycle_Number

| | | the Isochronous cycle on which the

| | | requested action is to be performed, if the |

| | | designated event is "Cycle Number".

oo Fommm e e +| 11to 8 | Reserved
Fommmmoeees Fommmmmm e o +| 7100 | Channel_Number |
This 8-bit field is only used for the start || (LS) |

| | | the Isochronous cycle that the target is to |

| | | use while sourcing or sinking Isochronous

| | | data.

+ + S +

Working Draft SCSI-3 Serial Bus Protocol 94

10

15

20

25

X3T9.2/92-199r9
Write Packets

Figure 41. Structure of the Isochronous Control Register

C.8 ISOCHRONOUS STATUS REPORTING

This section describes status reporting for the Port_Append command only. This command is the
only Isochronous command which results in data being transferred to or from the target.

There are three status reporting modes for Isochronous data data transfer commands. The
Port_Setup command declares the status reporting mode for a port. The mode remains in effect
for the entire life of the port.

The three modes differ in the way that the target handles error conditions during Isochronous data
transfer. The three modes are:

IGNORE AND CONTINUE target ignores all errors and continues Isochronous data transfer.

REPORT AND CONTINUE target logs errors as they occur and continues Isochronous data
transfer.

REPORT AND STOP target reports the first error that occurs and stops Isochronous data
transfer.

The following sections describe these operational modes.

C.8.1 MODE "IGNORE AND CONTINUE"

The target generates no status during operation. Upon encountering any error while sourcing or
sinking Isochronous data, the target ignores the error and continues. There is no
status block associated with this mode of operation.

C.8.2 MODE "REPORT AND CONTINUE"

In the "report and continue™ mode of operation, the target generates a running log of errors which
occur during execution of an Isochronous data transfer command. The target
writes this log to the sense buffer whose start address and length are contained
command block. Upon command completion, the target reports either success, to
indicate that no entries were generated in the log, or an appropriate error code to
indicate that the target generated one or more entries in the error log during
command execution.

Working Draft SCSI-3 Serial Bus Protocol 95

10

15

20

25

30

X3T9.2/92-199r9
Write Packets

If the target completely fills the allocated sense buffer, the target stops writing error log entries,
but continues executing the command to completion. Upon completing the
command, the target reports a status code indicating that the sense buffer is filled
with error log entries and some entries were discarded due to overflow.

Upon encountering an error, the target's operation is affected by the setting of the "Ok to
Continue" bit in the flags field of the command entry. The

target behaves as follows:

olf the "Ok to Continue" bit is set to zero and the target encounters

errors during execution of a command, the target logs all errors as described above. When
the command completes, the target stops processing commands in the Isochronous chain
until told to continue by way of the ICR.

0 If the "Ok to Continue™ bit in the flag field is set to one and the
target encounters errors during execution of a command, the target logs all errors as
described above and continues processing commands in the Isochronous list.

| EDITORIAL NOTE: Definition is not yet complete with regard to the "OK to
| Continue" bit, nor has a location been established for it. Present

| intention is to support this bit as a Flag in the Isochronous Control

| field appearing in the Isochronous Port_Append command.

Each entry in the error log reports an event. There are two defined events: (1) beginning of a
stream gap, and (2) end of a stream gap. A stream gap is defined as one or more consecutive
Isochronous cycles during which no data was transmitted or received on a given channel number.
The start of a gap is signified by one Isochronous cycle during which an Isochronous data packet
for a given channel is not generated (due to a talker problem) or is not received (due to an
Isochronous header or Isochronous data field CRC error, or missing packet). The end of a gap is
signified by the first Isochronous cycle following the start of a gap in which a valid Isochronous
data packet is transmitted or received for a given channel number. Notice that a stream gap may
appear at one device and not another.

As an example, if an Isochronous stream is interrupted for multiple consecutive Isochronous
cycles and then resumed, the target will log two entries to the error log regardless of the duration
of the stream gap: One error log entry to report the start of the start of the stream gap, and
another error log entry to report the end of the stream gap.

Each entry in the error log is one quadlet long. The format of the error log

entry is:

Working Draft SCSI-3 Serial Bus Protocol 96

10

15

20

25

30

X3T9.2/92-199r9
Write Packets

+ + +ommeee-
------------------------------------ +| BIT(S) | NAME | FUNCTION

+ommmmemees +- e +| 31 (MS) | Isochronous

| to12 | Cycle Number | Isochronous cycle at which the event

| | | occurred.

+ommmmemees +- e +| 11to O | Status Code

| (LS) | | which occurred on the reported Isochronous |

| | | cycle number according to the following

| | | table:

| | |

| | | VALUE STATUS CODE

| | |

| | | 0 Cycle number of the first cycle

| | | in the stream gap.

| | |

| | | 1 Pause sourcing/sinking

| | | Isochronous data and enter the

| | | paused state. If the target is

| | | sourcing data, then the target is |

| | | to continuously send zero length |
| | | Isochronous packets while in the |
| | | paused state.

| | |

| | | Cycle number of the first valid

| | | cycle of data following the

| | | stream gap.

| | |

| | | ALL OTHER CODES

| | | Reserved

+ + e +

Log Entry for an Isochronous Activity

The target's error log contains one entry for each start of gap detected and one entry for each end

of gap detected (i.e., two error log entries per stream gap). In the case where the target is the

Working Draft SCSI-3 Serial Bus Protocol 97

10

X3T9.2/92-199r9
Write Packets

talker, the target reports errors to the error log if it is unable to generate Isochronous packets for

whatever reason. If the target is a listener, the target reports error to the error log if it is unable to

receive a packet, due to a missing packet, or a data or header CRC error.

C.8.3 MODE "REPORT AND STOP"

In this operational mode, upon encountering an error, the target generates a status report and
immediately stops execution of the current command. The setting of the "Ok to Continue" bit
in the flag field of the command entry affects the target's next action as follows:

0 If the "Ok to Continue™ bit is set to zero, the target stops processing
commands for that Isochronous port until told to resume by way of the
ICR.

0 If the "Ok to Continue™ bit is set to one, the target continues proc-

essing subsequent commands in the Isochronous chain.

Working Draft SCSI-3 Serial Bus Protocol 98

10

15

20

25

X3T9.2/92-199r9

APPENDIX D. ISOCHRONOUS DATA STREAMS FOR IEEE 1394 SERIAL BUS
DEVICES

Please note that the primary point of contact for the material contained in this appendix is:

Rob Lash

Apple Computer
Cupertino, California
Voice: (408) 974-3889
FAX: (408) 446-9154

D.1 INTRODUCTION

This document describes an Isochronous data stream on Serial Bus and functional requirements
of node and unit implementations on the bus. It addresses issues relevant to the transaction layer
and below. An attempt is made not to stray above the transaction layer boundary. The concepts
developed within are Isochronous data stream specific and are independent of any
command/status delivery mechanism or 1/O process. Please contact the author at (408) 974-3889
if you have any questions or comments concerning this document.

This document will develop several key concepts useful in the description of the isochronous
Serial Bus model. Terminology is defined at the first mention and any mnemonics are given in
parenthesis.

This document assumes the reader has a strong understanding of the IEEE P1394 Serial Bus
standard. Important concepts include the Isochronous cycle start packet and Isochronous cycle
number, Isochronous data packet and its construction, and the bus access arbitration method. If
the reader does not feel they have a good grasp of the IEEE 1394 Serial Bus standard, that
standard should be read first.

D.1.1 TALKERS AND LISTENERS
The talker is the source of stream data. It transmits an Isochronous data packet every 125

microsecond for the duration of the stream. The listener is a sink of stream data. It
receives Isochronous data addressed to a specific

Working Draft SCSI-3 Serial Bus Protocol 99

10

15

20

X3T9.2/92-199r9
Write Packets

channel number. For any stream there will be one and only one talker at a time and one or more
listeners.

Appendix D. Isochronous Data Streams for IEEE 1394 Serial Bus Devices 113

D.1.2 ISOCHRONOUS DATA STREAMS

A stream is a contiguous series of Isochronous packets (one per cycle) on Serial Bus. Each
packet in a stream shares a common channel number. The channel number is in effect the
destination address of each packet in a stream. Each stream has a start of stream (SOS) and an
end of stream (EOS). The SOS and EOS are simply Isochronous data packets which use two

synchronization bits (SY) in the packet header as illustrated below:

SY bits

00 - normal data packet

01 - start of stream (SOS) data packet
10 - end of stream (EOS) data packet

11 - invalid (do not use)

Refer to appendix B of this document for a summary of the format of the Isochronous packet.

D.1.3 GAPS IN DATA STREAMS

A stream may contain zero length data packets but this is not a gap. A gap is an error condition
which indicates a missing packet. This missing packet could be the SOS or EOS packet as well
as any normal data packet within the stream.

Working Draft SCSI-3 Serial Bus Protocol 100

10

15

20

25

30

X3T9.2/92-199r9
Write Packets

The purpose of the SOS and EOS packets are to delimit the stream for the listener. Talkers will
set the SOS bit in the header of the first packet of a stream and will set the EOS bit in the last
packet of a stream. If either the SOS or EOS packets are not detected, there were one or more
lost packets at the corresponding start or end of the stream. If a packet does not arrive for any
Isochronous cycle during a stream (delimited by SOS and EQOS) there was a lost packet within
that stream. Single packet streams (i.e., SOS = EOS) are not allowed. They complicate the state
machines and are of questionable utility.

D.1.4 FIXED RATE VS. VARIABLE RATE

There are two types of data transfer rates for streams. They are fixed rate and variable rate data
transfer. A variable rate stream will vary its bandwidth utilization depending upon certain
requirements specific to that stream. This means that variable rate data transfer will be specified
as a maximum or peak transfer rate. If this peak transfer rate is exceeded, data loss and maybe
the complete collapse of the Isochronous transport should be expected.

A fixed rate stream will sustain an average bandwidth utilization in a

deterministic manner. This means that a fixed rate data transfer will be specified as a set of
integers which characterize the method used to sustain this average transfer rate. A simple
method known as the A/B count is used for this purpose. The fixed rate transfer algorithm is
comprised of two phases, A and B. The A count and B count parameters specify the duration of
each phase as a number of Isochronous cycles. The A length and B length parameters specify the
number of bytes to send each cycle of the associated phase. In this way, non-harmonic data
transfer rates can be specified.

For example, an A/B count could specify that 1 byte is sent for 7 cycles (A), then 2 bytes are sent
for 1 cycle (B). This would define a fixed rate transfer greater than the 8 Khz cycle start rate.

D.1.5 ERROR HANDLING BEHAVIOR

There are three defined behavioral modes or talkers and listeners upon detection of an error
during a stream. They are ignore and continue (IGNORE), report and continue (CONTINUE)
and report and stop (STOP). There is no defined ignore and stop behavior.

During transmission of stream there are several error conditions which might occur (e.g., missing
packet, data error). Errors are detected and reported on transition boundaries (e.g., Isochronous
cycle or the detection event) and not on state. For example, when several consecutive data
packets are lost, only one event (missing packet) is reported. Each subsequent missing packet is
not reported.

Working Draft SCSI-3 Serial Bus Protocol 101

10

15

20

25

X3T9.2/92-199r9
Write Packets

Consider the case where a talker or listener (a unit) is operating in the CONTINUE mode. A
stream gap is detected and reported. On a subsequent cycle the stream has recovered and this
non-error event is also detected. The unit must now issue a second report indicating that the
stream has been recovered. These two reports delimit the error (gap) and allow higher level
functions the option to repair the stream via post-stream processing. These reports do not need to
be issued immediately. They may be logged by the unit for use after the stream has completed.
The second report message is not issued when a unit is operating in the STOP mode. Neither
report is issued when a unit

is operating in the IGNORE mode.

D.1.6 WHAT DOES CONTINUE MEAN?

There are three ways in which a unit can continue. The modes are skip, fill and concatenate. In
the concatenate mode, when a unit detects a gap, it does not try to manage buffer pointers but
simply appends (concatenates) subsequent data to its existing buffer, effectively eliminating the
stream gap.

In the skip mode, when a unit detects a gap in a stream, it determines the extent of the missing
data. The unit then advances its buffer pointer (or performs other appropriate behavior such as
transmitting zero length data packets if it is a talker) to leave a known gap in the receiving buffer.
This gap in the receiving buffer can then be filled by the talker after the stream has completed.

Appendix D. Isochronous Data Streams for IEEE 1394 Serial Bus Devices 115

In the fill mode, the units fills any gaps in a stream with a predefined data pattern. The fill mode
is dependent upon the devices involved and the nature of the stream. Definition of the fill mode
is beyond the scope of this document.

D.1.7 NODES, UNITS AND PORTS

A node is an IEEE 1212 addressable entity on the Serial Bus. A unit is any process within a node
that can be identified by parsing the node's IEEE 1212 ROM space. A node may implement one
or more units with either shared or dedicated local resources. A collection of local resources
enabling talker or listener functionality are referred to as a port. A unit requires a port before it
can become a talker or listener. Consider the simple case of a expansion memory unit. The port

Working Draft SCSI-3 Serial Bus Protocol 102

10

15

20

25

X3T9.2/92-199r9
Write Packets

could be simply a DMA engine (address/count/direction) operating on a memory buffer. The unit
process would be a simple module which initializes the port (local resources) in anticipation of a
data stream. Using this example, it is possible to have multiple ports dynamically associated
with a single unit (process) or even shared among multiple units.

In the preceding example an intermediate buffer was used to store and source stream data. Other
node configurations are possible such as a port dedicated to a hardware unit process (e.g., an
audio speaker). In this case, there would be no need to dynamically associate the port with the
unit.

It is not necessarily apparent when parsing the node's ROM space whether it is implemented with
shared or dedicated ports (local resources). These local resources are not visible on the Serial
Bus. It is one of the functions of a unit to acquire the necessary local resources which comprise a
port. This function may be invoked by the unit's drive software.

D.2 ISOCHRONOUS COMMAND SET

The Isochronous command set is used to control the programmable configuration and behavior of
talkers and listeners (units). There are two classes of Isochronous commands. The first class of
commands provides the ability to control a unit's modes and local resources. The second class of
commands provides the ability to control a unit's state. Both classes of commands share a
common command block structure.

An Isochronous command block is a structure containing parameters and operation codes. In
general, there are two major areas within an Isochronous command block, stream specific and
unit specific. Details of the unit specific area of the Isochronous command block are defined by
agreement between the unit and its driver software and are beyond the scope of this document.

This document discusses the stream specific aspects of an Isochronous command.

Working Draft SCSI-3 Serial Bus Protocol 103

	Revision History
	Foreward
	Introduction
	I
	Scope
	Normative References
	Definitions and Conventions
	Definitions

	Overview
	Model of Serial Bus Protocol
	Model of Serial SCSI Initiator
	Shouldler Tap Protocol for Command Delivery
	Setting of the M_Flag
	Setting of the ESC_Flag
	Setting of the L_Flag
	Focus of a Command Chain
	Composition of a Command Chain
	Retention of a Command Block by the Initiator

	Model of Serial SCSI Target
	Usage of the Status FIFO
	Usage of the L_Flag
	Usage of the M_Flag
	Usage of the ESC_Flag
	Management of Target Resources

	Command Transfer Protocol
	Conceptual Initiator - Target Connection
	Multiple Initiator Environment

	Packet Types
	SCSI-3 Serial Bus Protocol Support Elements
	Target "Register" Definitions
	Command FIFOs
	First Failure "Register" (optional)
	First Failure Control "Register" (optional)

	Initiator "Register" Definitions
	Status FIFO
	Asynchronous Event Reporting

	Command and Status Information
	Command Blocks
	Status Block
	Initiator Scatter/Gather List

	Payload Specification For Command Transfer Packets
	Payload of SCSI Command Initiation Packet - "Tap Packet"
	Response Reactions to Tap Packet

	Command Read Request
	Request Payload
	Response Payload

	Data Transfer Protocol
	Asynchronous Transfer
	Data Read From Device Medium
	Data Written To Device Medium

	Status Transfer Protocol
	Target Reaction to Initiator Failure to Accept a Status Block
	Target Reaction to Abort Tag Request From an Initiator
	Target Reaction When a Cmmand Block Cannot Be Fetched
	Target Reaction to a Unit Attention Condition

	SBP Control Protocols
	Log-in Protocol
	Request/Release of a Tap Slot
	Request/Release of Notification for Asynchronous Events

	Examples
	Target Read Command
	Target Multiple Read Commands

	Messages
	Abort Tag Payload
	Target Reset Payload
	Payload of Clear Queue Packet
	Priority Tap Message Payload
	Log-In_Request Message Payload
	FF_Control_Request Message Payload
	Request/Release of Tap Slots Message Payload
	Request/Release of Asynchronous Notification Message Payload

	Compatibility to Parallel SCSI
	Relation of a Target to Multiple Initiators

	A
	Appendix A. Packet Formats
	Write Packets

	A
	A
	A

